Thermal processing and quality: Principles and overview
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fellows, 2000
Juneja, 1995, Influence of the intrinsic properties of food on thermal inactivation of spores of non-proteolytic Clostridium botulinum: development of a predictive model, Food Safety J., 15, 349, 10.1111/j.1745-4565.1995.tb00145.x
Gavin, 1995
Stumbo, 1973
Ramaswamy, 1989, An analysis of TDT and Arrhenius methods for handling process and kinetic data, Food Sci. J., 54, 1322, 10.1111/j.1365-2621.1989.tb05983.x
Holdsworth, 1997
Nath, 1977, Evaluation of thermal process for acidified canned muskemelon (Cucumis melo L.), Food Sci. J., 42, 985, 10.1111/j.1365-2621.1977.tb14484.x
Ramaswamy, 1981, Thermal inactivation of peroxidase in relation to quality of frozen cauliflower (var. Indian Snowball), Can. Inst. Food Sci. Technol. J., 14, 139, 10.1016/S0315-5463(81)72726-3
Awuah, 1993, Thermal inactivation kinetics of trypsin at aseptic processing temperatures, Food Proc. Eng. J., 16, 315, 10.1111/j.1745-4530.1993.tb00324.x
M.C. Keenan, Prediction of thermal inactivation effects in microwave heating, M.Sc. Thesis, Univ. Massachusettes, MA, 1983.
A. Foley, Modeling a continuous microwave pasteurization process, M.Sc. Thesis, Univ. Massachusettes, MA, 1985.
S. Tajchakavit, Microwave heating of fruit juices: kinetics of enzyme inactivation/microbial destruction and evaluation of enhanced thermal effects, Ph.D. Thesis, McGill Univ. Montreal, Canada, 1997.
Davidson, 2003, Decimal reduction times
Plug, 2000, Heat treatment, 36
Juneja, 2002, Thermal inactivation of microorganisms, 13
van Boekel, 2002, On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells, Int. J. Food Microbiol., 74, 139, 10.1016/S0168-1605(01)00742-5
Kellerer, 1987, Models of cellular radiation action, 305
Peleg, 1998, Reinterpretation of microbial survival curves, Crit. Rev. Food Sci., 38, 353, 10.1080/10408699891274246
Sapru, 1993, Comparison of predictive models for bacterial spore population resources to sterilization temperatures, Food Sci. J., 58, 223, 10.1111/j.1365-2621.1993.tb03250.x
D.R. Heldman, R.L. Newsome, Kinetic models for microbial survival during processing, Food Technol. 57 (8) (2003) 40–46, 100.
Anderson, 1996, The application of log-logistic model to describe the thermal inactivation of C. botulinum 213B at temperatures below 121.1°C, Appl. Bacteriol. J., 80, 283, 10.1111/j.1365-2672.1996.tb03221.x
Peleg, 2000, Modeling microbial survival during exposure to a lethal agent with varying intensity, Crit. Rev. Food Sci. Nutri., 40, 159, 10.1080/10408690091189301
Lambert, 2003, A model for the thermal inactivation of micro-organisms, Appl. Micro. J., 95, 500, 10.1046/j.1365-2672.2003.02009.x
Peleg, 2000, Microbial survival curve-the reality of flat “shoulder” and absolute thermal death times, Food Res. Intl., 33, 531, 10.1016/S0963-9969(00)00088-0
Peleg, 2000, Estimating the survival of Clostridium botulinum spore during heat treatment, Food Prot. J., 63, 190, 10.4315/0362-028X-63.2.190
Peleg, 2001, Estimation of the survival curve of Listeria monocytogenes during non-isothermal heat treatments, Food Res. Intl., 34, 383, 10.1016/S0963-9969(00)00181-2
Zanoni, 1997, A dynamic mathematical model of the thermal inactivation of Enterococcus faecium during bologna sausage cooking, Lebensm.-Wiss. u.-Technol., 30, 727, 10.1006/fstl.1997.0244
V. Sapru, A.A. Teixeira, G.H. Smerage, J.A. Lindsay, Predicting thermophilic spore population dynamics for UHT sterilization processes, Food Sci. J. 57 (5) (1992) 1248–1252, 1257.
Shull, 1963, Kinetics of heat activation and thermal death of bacterial spore, Appl. Microbiol., 11, 485, 10.1128/AEM.11.6.485-487.1963
Rodriguez, 1988, Kinetic effects of lethal temperature on population dynamics of bacterial spores, Trans. ASAE, 31, 1594, 10.13031/2013.30906
Linton, 1995, Use of the modified Gompertz equation to model nonlinear survival curves for Listeria monocytogenes scott A, Food Prot. J., 58, 946, 10.4315/0362-028X-58.9.946
Linton, 1996, Use of the modified Gompertz equation to predict the effects of temperature, pH and NaCl on the inactivation of Listeria monocytogenes scott A in infant formula, Food Prot. J., 59, 16, 10.4315/0362-028X-59.1.16
Xiong, 1999, Comparison of the Baranyi model with the modified Gompertz equation for modeling thermal inactivation of Listeria monocytogenes Scott A, Food Microbiol., 16, 269, 10.1006/fmic.1998.0243
Cerf, 1977, Tailing of the survival curves of bacterial spores, Appl. Bacteriol., 42, 1, 10.1111/j.1365-2672.1977.tb00665.x
Kamau, 1990, Enhanced thermal destruction of Listeria monocytogenes and Staphylococcus aureus by the lacto-peroxidase system, Appl. Environ. Microbiol., 56, 2711, 10.1128/AEM.56.9.2711-2716.1990
Cole, 1993, A vitalistic model to describe the thermal inactivation of Listeria monocytogenes, Ind. Microbiol. J., 12, 232, 10.1007/BF01584195
Hayakawa, 1977, Mathematical methods for estimating proper thermal processes and their computer implementation, vol. 23
Brown, 1991, Principles of heat preservation
Ramswamy, 1997, Sterilization process engineering
Harper, 1976
Hammid-Samini, 1984, Pasteurization design criteria for production of extended shelf-life refrigeration liquid whole egg, Food Proc. Preserv. J., 8, 219, 10.1111/j.1745-4549.1985.tb00699.x
Ball, 1957
Hayakawa, 1970, Experimental formulas for accurate estimation of transient temperature of food and their application to thermal process evaluation, Food Technol., 24, 89
Pham, 1987, Calculation of thermal process lethality for conduction-heated canned foods, Food Sci. J., 52, 967, 10.1111/j.1365-2621.1987.tb14254.x
Stumbo, 1966, New parameters for process calculation, Food Technol., 20, 341
Gillespy, 1951, Estimation of sterilizing values of processes as applied to canned foods. I. Packs heating by conduction, Food Sci. Agric. J., 2, 107, 10.1002/jsfa.2740020303
Smith, 1982, Comparison of formula methods for calculating thermal process lethality, Food Sci. J., 47, 626, 10.1111/j.1365-2621.1982.tb10137.x
Chen, 2002, Dynamic modeling of retort processing using neural networks, Food Proc. Preserv. J., 26, 91, 10.1111/j.1745-4549.2002.tb00855.x
Lopez, 1987
Sablani, 2001, Computerization of Stumbo's method of thermal process calculations using neural networks, Food Eng. J., 47, 233, 10.1016/S0260-8774(00)00121-7
Lund, 1993, The system and its elements, 3
Mansfield, 1962, High temperature short time sterilization, 311
Silva, 1992, Critical evaluation of commonly used objective functions to optimize overall quality and nutrient retention of heat-preserved foods, Food Eng. J., 17, 241, 10.1016/0260-8774(92)90043-6
Evans, 1982, Optimization theory and its application in food processing, Food Technol., 36, 88
Bender, 1982, Linear programming and its applications in the food industry, Food Technol., 36, 94
Lund, 1982, Application of optimization in heat processing, Food Technol., 36, 97
Norback, 1980, Techniques for optimization of food processes, Food Technol., 34, 86
Banga, 1991, Optimization of thermal processing of conduction-heated canned foods: study of several objective functions, Food Eng. J., 14, 25, 10.1016/0260-8774(91)90052-T
Noronha, 1993, Optimization of surface quality retention during thermal processing of conduction heated foods using variable retort profiles, Food Proc. Preserv. J., 17, 75, 10.1111/j.1745-4549.1993.tb00226.x
Almonacid-Merino, 1993, Time-variable retort temperature profiles for cylindrical cans: batch process time, energy consumption and quality retention model, Food Eng. J., 16, 271, 10.1111/j.1745-4530.1993.tb00321.x
Hendrickx, 1992, Optimization of heat transfer in thermal processing of conduction heated foods, 221
Hendrickx, 1993, Generalized (semi)-empirical formulae for optimum sterilization temperature of conduction heated foods with infinite surface heat transfer coefficient, Food Eng. J., 19, 141, 10.1016/0260-8774(93)90039-M
Silva, 1994, Quality optimization of conduction heating foods sterilized in different packages., Intl. J. Food Sci. Technol., 29, 515, 10.1111/j.1365-2621.1994.tb02094.x
Noronha, 1996, An empirical equation for the description of optimum variable retort temperatures profiles that maximize surface quality retention in thermally processed foods, Food Proc. Preserv. J., 20, 251, 10.1111/j.1745-4549.1996.tb00746.x
Smout, 2003, Non-uniformity in lethality and quality in thermal process optimization: a case study on color degradation of green peas, Food Sci. J., 68, 545, 10.1111/j.1365-2621.2003.tb05709.x
Baucour, 2003, Process optimization strategies to diminish variability in the quality of discrete packaged foods during thermal processing, Food Eng. J., 60, 147, 10.1016/S0260-8774(03)00028-1
Durance, 1997, Improving canned food quality with variable retort temperature processes, Trends Food Sci. Technol., 8, 113, 10.1016/S0924-2244(97)01010-8
Teixeira, 1975, Computer simulation of variable retort control and container geometry as a possible means of improving thiamine retention in thermally processed foods, Food Sci. J., 40, 656, 10.1111/j.1365-2621.1975.tb00522.x
Saguy, 1979, Optimal retort temperature profile in optimizing thiamine retention in conduction-type heating of canned foods, Food Sci. J., 44, 1485, 10.1111/j.1365-2621.1979.tb06468.x
Nadkarni, 1985, Optimal nutrient retention during the thermal processing of conduction-heated canned food: application of the distributed minimum principle, Food Sci. J., 50, 1312, 10.1111/j.1365-2621.1985.tb10467.x
Durance, 1997, Selection of variable retort temperature processes for canned salmon, Food Proc. Eng. J., 20, 65, 10.1111/j.1745-4530.1997.tb00411.x
Chen, 2002, Modeling and optimization of variable retort temperature (VRT) thermal processing using coupled neural networks and genetic algorithms, Food Eng. J., 53, 209, 10.1016/S0260-8774(01)00159-5
Erdoğdu, 2003, Nonlinear constrained optimization of thermal processing: II. Variable process temperature profiles to reduce process time and to improve nutrient retention in spherical and finite cylindrical geometries, Food Proc. Eng. J., 26, 303, 10.1111/j.1745-4530.2003.tb00603.x
Noronha, 1996, Simultaneous optimization of surface quality during the sterilization of packed foods using constant and variable retort temperature profiles, Food Eng. J., 30, 283, 10.1016/S0260-8774(96)00035-0
Balsa-Canto, 2002, A novel efficient and reliable method for thermal process design and optimization. Part I: theory, Food Eng. J., 52, 227, 10.1016/S0260-8774(01)00110-8
Balsa-Canto, 2002, A novel efficient and reliable method for thermal process design and optimization. Part II: applications, Food Eng. J., 52, 235, 10.1016/S0260-8774(01)00111-X
Chalabi, 1999, Robust optimal receding horizon control of the thermal sterilization of canned foods, Food Eng. J., 40, 207, 10.1016/S0260-8774(99)00057-6
Terajima, 1996, Retort temperature profile for optimum quality during conduction-heating of foods in retortable pouches, Food Sci. J., 61, 673, 10.1111/j.1365-2621.1996.tb12179.x
Erdoğdu, 2002, Nonlinear constrained optimization of thermal processing: I. Development of the modified algorithm of complex method, Food Proc. Eng. J., 25, 1, 10.1111/j.1745-4530.2002.tb00553.x
Banga, 2003, Improving processing using modern optimization methods, Trends Food Sci. Technol., 14, 131, 10.1016/S0924-2244(03)00048-7
Mulley, 1975, Thiamine: a chemical index of sterilization efficacy of thermal processing, Food Sci. J., 40, 993, 10.1111/j.1365-2621.1975.tb02251.x
Kim, 1993, Intrinsic chemical markers for aseptic processing of particulate foods, Food Technol. J., 47, 91, 10.1111/j.1365-2621.2011.02811.x
Weng, 1991, Immobilized peroxidase: a potential bio-indicator for evaluation of thermal processes, Food Sci. J., 56, 567, 10.1111/j.1365-2621.1991.tb05326.x
Berry, 1989, Kinetics of methylmethionine sulfonium in buffer solutions for estimating thermal treatment of liquid foods., Food Proc. Preserv. J., 13, 475, 10.1111/j.1745-4549.1989.tb00120.x
Awuah, 1993, Thermal inactivation kinetics of trypsin at aseptic processing temperatures, Food Proc. Eng. J., 16, 315, 10.1111/j.1745-4530.1993.tb00324.x
Torres, 1999, Application of the acid hydrolysis of sucrose as a temperature indicator in continuous thermal processes, Food Eng. J., 40, 181, 10.1016/S0260-8774(99)00054-0
Kim, 1993, Intrinsic chemical markers for aseptic processing of particulate foods, Food Technol., 47, 91, 10.1111/j.1365-2621.2011.02811.x
Kim, 1994, Analysis of thermally produced compounds if foods by thermospray liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry, Agric. Food Chem. J., 42, 2812, 10.1021/jf00048a030
Ramaswamy, 1996, Evaluation of a chemical marker for process lethality measurement at 110C in a continuous flow holding tube, Food Proc. Preserv. J., 20, 235, 10.1111/j.1745-4549.1996.tb00745.x
Ramaswamy, 1992, Thermal processing and computer modeling, vol. 4
Lewis, 2000
Fennema, 1985
Whistler, 1985, Carbohydrates, 69
Yamaguchi, 1976, In-package high-temperature short-time sterilization of foods packaged in retortable pouches
Swaisgood, 1985, Characteristics of edible fluids of animal origin: milk, 791
Neilsen, 1993, Chemistry of aseptically processed foods, 87
Herbert, 1987, Packaging for thermally sterilized foods, 87
Ghani, 2002, Theoretical and experimental investigation of the thermal destruction of vitamin C in food pouches, Comput. Electron. Agric., 34, 129, 10.1016/S0168-1699(01)00183-1
Simpson, 2004, Mathematical model development, experimental validation and process optimization: retortable pouches packed with seafood in cone frustum shape, Food Eng. J., 63, 153, 10.1016/S0260-8774(03)00294-2
Tung, 1984, Surface heat transfer coefficient for steam/air mixtures in two pilot scale retorts, Food Sci. J., 49, 939, 10.1111/j.1365-2621.1984.tb13246.x
C. Brokaw, J.E. Wilson, T. Manley, Method and apparatus for continuous thermal processing of packaging products. US Patent. US 2003/0200876 A1 (2003).
Cristianini, 2002, Thermal process evaluation of retortable pouches filled with conduction heated food, J. Food Proc. Eng., 25, 395, 10.1111/j.1745-4530.2002.tb00573.x
S. Palaniappan, C.E. Sizer, Aseptic process validation for foods containing particles. Food Technol. 51 (8) (1997) 60–62, 64, 66, 68.
Sandeep, 1995, Residence time of multiple particles in non-Newtonian holding tube flow: effect of process parameters and development of dimensionless correlations, Food Eng. J., 25, 31, 10.1016/0260-8774(95)93014-M
Grabowski, 1995, Incipient carrier fluid velocity for particulates flow in a holding tube, Food Eng. J., 24, 123, 10.1016/0260-8774(94)P1613-3
Lareo, 1997, The fluid mechanics of two-phase solid-liquid food flows: a review, Trans. Inst. Chem. Eng., 75, 73
Ramaswamy, 1997, Heat transfer and lethality considerations in aseptic processing of liquid/particle mixtures: a review, Crit. Rev. Food Sci. Nutri., 37, 253, 10.1080/10408399709527775
Chandarana, 1989, Establishing thermal processes for heterogeneous foods to be processed aseptically: a theoretical comparison of process development methods, Food Sci. J., 54, 198, 10.1111/j.1365-2621.1989.tb08601.x
Orfeuil, 1987
Zhoa, 2000, Using capacitive (radio frequency) dielectric heating in Food processing and preservation—a review, Food Proc. Eng. J., 23, 25, 10.1111/j.1745-4530.2000.tb00502.x
Ohlsson, 2002, Minimal processing of foods with thermal methods
Kozempel, 1998, Inactivation of microorganisms with microwaves at reduced temperatures, Food Prot. J., 61, 582, 10.4315/0362-028X-61.5.582
Khalil, 1988, Comparative study on injury and recovery of Staphylococcus aureus using microwaves and conventional heating, Food Prot. J., 51, 181, 10.4315/0362-028X-51.3.181
Ramaswamy, 2000, Enhanced thermal effects under microwave heating conditions
Kozempel, 2000, Development of a process for detecting nonthermal effects of microwave energy on microorganisms at low temperature, Food Proc. Preserv. J., 24, 287, 10.1111/j.1745-4549.2000.tb00420.x
T. Kudra, F.R. van de Voort, G.S.V. Raghavan, H.S. Ramaswmay, Heating characteristics of milk constituents in a microwave pasteurization system. Food Sci. J. 56 (4) (1991) 931–934, 937.
Knutson, 1988, Use of microwave ovens to pasteurize milk, Food Prot. J., 51, 715, 10.4315/0362-028X-51.9.715
Casasnovas, 1994, Thermal processing of foods packaging waste using microwave heating, Microwave Power Electromagn. Energy J., 29, 171, 10.1080/08327823.1994.11688246
Zhang, 2000, Electromagnetics of microwaves heating: magnitude and uniformity of energy absorption in an oven
Zhao, 2000, Using capacitive (radio frequency) dielectric heating in food processing and preservation—a review, Food Proc. Eng. J., 23, 25, 10.1111/j.1745-4530.2000.tb00502.x
Awuah, 2002, Radio frequency (RF) heating of starch solutions under continuous flow conditions: effect of system and product parameters on temperature change across the applicator tube, Food Proc. Eng. J., 25, 201, 10.1111/j.1745-4530.2002.tb00563.x
Zhong, 2003, Continuous flow radio frequency heating of water and carboxymethylcellulose solutions, Food Sci. J., 68, 217, 10.1111/j.1365-2621.2003.tb14142.x
Wang, 2003, Sterilization of foodstuffs using radio frequency heating, Food Sci. J., 68, 539, 10.1111/j.1365-2621.2003.tb05708.x
Demeczky, 1974, Continuous pasteurization of bottled fruit juices by high frequency energy, 11
Palaniappan, 1991, Electrical conductivity of selected juices: influences of temperature, solids contact, applied voltage and particle size, Food Proc. Eng. J., 14, 221, 10.1111/j.1745-4530.1991.tb00093.x
Parrot, 1992, Use of ohmic heating from aseptic processing of food particulates, Food Technol., 46, 68
Teixeira, 1997, On-line retort control in thermal sterilization of canned foods, Food Control, 8, 13, 10.1016/S0956-7135(96)00056-4
Kumar, 2001, Retrofitting of a vertical retort for on-line control of the sterilization process, Food Eng. J., 47, 89, 10.1016/S0260-8774(00)00103-5
Giannoni-Succar, 1982, Correction factor of deviant thermal processes applied to packaged heat conduction food, Food Sci. J., 47, 642, 10.1111/j.1365-2621.1982.tb10140.x
Noronha, 1995, New semi-empirical approach to handle time-variable boundary conditions during sterilization of non-conductive heating foods, Food Eng. J., 24, 249, 10.1016/0260-8774(94)P2646-M
Alonso, 1998, Modeling and adaptive control for batch sterilization, Comput. Chem. Eng., 22, 445, 10.1016/S0098-1354(97)00250-0
Teixeira, 1999, Heat transfer model performance in simulation of process deviations, Food Sci. J., 64, 488, 10.1111/j.1365-2621.1999.tb15068.x