Thermal performance analysis of tunable magnetite nanofluids for an energy system
Tài liệu tham khảo
Bahiraei, 2015, Flow and heat transfer characteristics of magnetic nanofluids: a review, J. Magn. Magn. Mater., 374, 125, 10.1016/j.jmmm.2014.08.004
Lee, 2013, Novel perturbations between magnetic nanofluid and the thermal fluidic system at heat dissipation, Microelectron. Eng., 111, 58, 10.1016/j.mee.2013.01.048
Iwamoto, 2011, Magnetically-driven heat transport device using a binary temperature-sensitive magnetic fluid, J. Magn. Magn. Mater., 323, 1378, 10.1016/j.jmmm.2010.11.050
Wang, 2012, Controlled synthesis and size-dependent thermal conductivity of Fe3O4 magnetic nanofluids, Dalton Trans., 41, 896, 10.1039/C1DT11222H
Parekh, 2012, Experimental investigation of thermal conductivity of magnetic nanofluids, AIP Conf. Proc., 1447, 385, 10.1063/1.4710041
Gavili, 2012, The thermal conductivity of water base ferrofluids under magnetic field, Exp. Thermal Fluid Sci., 41, 94, 10.1016/j.expthermflusci.2012.03.016
Bahiraei, 2016, Automatic cooling by means of thermomagnetic phenomenon of magnetic nanofluid in a toroidal loop, Appl. Therm. Eng., 107, 700, 10.1016/j.applthermaleng.2016.07.021
Odenbach, 2002
Fadaei, 2017, Convective-heat transfer of magnetic-sensitive nanofluids in the presence of rotating magnetic field, Appl. Therm. Eng., 116, 329, 10.1016/j.applthermaleng.2017.01.072
Lin, 2013, The anti-hepatoma effect of nanosized Mn–Zn ferrite magnetic fluid hyperthermia associated with radiation in vitro and in vivo, Nanotechnology, 24, 255101, 10.1088/0957-4484/24/25/255101
Miaskowski, 2013, Magnetic fluid hyperthermia modeling based on phantom measurements and realistic breast model, IEEE Trans. Biomed. Eng., 60, 1806, 10.1109/TBME.2013.2242071
Syam Sundar, 2013, Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications, Int. Commun. Heat Mass Transfer, 44, 7, 10.1016/j.icheatmasstransfer.2013.02.014
Li, 2005, Experimental investigations on transport properties of magnetic fluids, Exp. Thermal Fluid Sci., 30, 109, 10.1016/j.expthermflusci.2005.03.021
Pastoriza-Gallego, 2011, Enhancement of thermal conductivity and volumetric behavior of FexOy nanofluids, J. Appl. Phys., 110, 014309, 10.1063/1.3603012
Abareshi, 2010, Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids, J. Magn. Magn. Mater., 322, 3895, 10.1016/j.jmmm.2010.08.016
Hong, 2006, Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles, Appl. Phys. Lett., 88, 10.1063/1.2166199
Tsai, 2008, Effect of viscosity of base fluid on thermal conductivity of nanofluids, Appl. Phys. Lett., 93, 233121, 10.1063/1.3046732
Krichler, 2013, Thermal conductivity measurements on ferrofluids with special reference to measuring arrangement, J. Magn. Magn. Mater., 326, 85, 10.1016/j.jmmm.2012.08.037
Shima, 2011, Tuning of thermal conductivity and rheology of nanofluids using an external stimulus, J. Phys. Chem. C, 115, 20097, 10.1021/jp204827q
Lajvardi, 2010, Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect, J. Magn. Magn. Mater., 322, 3508, 10.1016/j.jmmm.2010.06.054
Goharkhah, 2016, Experimental investigation on convective heat transfer and hydrodynamic characteristics of magnetite nanofluid under the influence of an alternating magnetic field, Int. J. Therm. Sci., 99, 113, 10.1016/j.ijthermalsci.2015.08.008
Goharkhah, 2015, Convective heat transfer characteristics of magnetite nanofluid under the influence of constant and alternating magnetic field, Powder Technol., 274, 258, 10.1016/j.powtec.2015.01.031
Azizian, 2014, Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids, Int. J. Heat Mass Transf., 68, 94, 10.1016/j.ijheatmasstransfer.2013.09.011
Sha, 2017, Experimental investigation on the convective heat transfer of Fe3O4/water nanofluids under constant magnetic field, Appl. Therm. Eng., 113, 566, 10.1016/j.applthermaleng.2016.11.060
Esmaeili, 2017, The influence of the alternating magnetic field on the convective heat transfer properties of Fe3O4-containing nanofluids through the Neel and Brownian mechanisms, Appl. Therm. Eng., 110, 1212, 10.1016/j.applthermaleng.2016.09.014
Rosen, 2008, Role of exergy in increasing efficiency and sustainability and reducing environmental impact, Energy Policy, 36, 128, 10.1016/j.enpol.2007.09.006
Shojaeizadeh, 2016, Development of a correlation for parameter controlling using exergy efficiency optimization of an Al2O3/water nanofluid based flat-plate solar collector, Appl. Therm. Eng., 98, 1116, 10.1016/j.applthermaleng.2016.01.001
Khairul, 2016, Experimental study on fundamental mechanisms of ferro-fluidics for an electromagnetic energy harvester, Ind. Eng. Chem. Res., 55, 12491, 10.1021/acs.iecr.6b03161
Khairul, 2014, Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids, Int. Commun. Heat Mass Transfer, 50, 8, 10.1016/j.icheatmasstransfer.2013.11.006
Yu, 2003, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanoparticle Res., 5, 167, 10.1023/A:1024438603801
Solangi, 2015, A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids, Energy, 89, 1065, 10.1016/j.energy.2015.06.105
Khairul, 2017, The influence of different flow regimes on heat transfer performance and exergy loss of Al2O3/DI-water and CuO/DI-water nanofluids, Appl. Therm. Eng., 122, 566, 10.1016/j.applthermaleng.2017.05.035
A. International, P.J. Blau, J.R. Davis, ASM Handbook: Properties and Selection: Irons, Steels, and High-performance Alloys, ASM International, 2001.
Voldsund, 2014, Exergy destruction and losses on four North Sea offshore platforms: a comparative study of the oil and gas processing plants, Energy, 74, 45, 10.1016/j.energy.2014.02.080
Zimmermann, 2012, Hot water cooled electronics: exergy analysis and waste heat reuse feasibility, Int. J. Heat Mass Transf., 55, 6391, 10.1016/j.ijheatmasstransfer.2012.06.027
Gut, 2004, Thermal model validation of plate heat exchangers with generalized configurations, Chem. Eng. Sci., 59, 4591, 10.1016/j.ces.2004.07.025
Akhavan-Behabadi, 2015, Experimental investigation of thermal–rheological properties and heat transfer behavior of the heat transfer oil–copper oxide (HTO–CuO) nanofluid in smooth tubes, Exp. Thermal Fluid Sci., 68, 681, 10.1016/j.expthermflusci.2015.07.008
Ghajar, 1994, Heat transfer measurements and correlations in the transition region for a circular tube with three different inlet configurations, Exp. Thermal Fluid Sci., 8, 79, 10.1016/0894-1777(94)90075-2
J.H. Lienhard IV, A Heat Transfer Textbook, second ed., Phlogiston Press, 2002.
Gnielinski, 1976, New equations for heat and mass-transfer in turbulent pipe and channel flow, Int. Chem. Eng., 16, 359
Kim, 2009, Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions, Curr. Appl. Phys., 9, e119, 10.1016/j.cap.2008.12.047
Khairul, 2016, Effects of surfactant on stability and thermo-physical properties of metal oxide nanofluids, Int. J. Heat Mass Transf., 98, 778, 10.1016/j.ijheatmasstransfer.2016.03.079
Andhariya, 2008, Field induced rotational viscosity of ferrofluid: effect of capillary size and magnetic field direction, J. Colloid Interface Sci., 323, 153, 10.1016/j.jcis.2008.04.018
Khaleduzzaman, 2014, Energy, exergy, and friction factor analysis of nanofluid as a coolant for electronics, Ind. Eng. Chem. Res., 53, 10512, 10.1021/ie501242b
Moghaddami, 2011, Second law analysis of nanofluid flow, Energy Convers. Manage., 52, 1397, 10.1016/j.enconman.2010.10.002
Pandey, 2012, Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger, Exp. Thermal Fluid Sci., 38, 248, 10.1016/j.expthermflusci.2011.12.013
Beckwith, 1990