Thermal performance analysis of tunable magnetite nanofluids for an energy system

Applied Thermal Engineering - Tập 126 - Trang 822-833 - 2017
M.A. Khairul1, Elham Doroodchi2, Reza Azizian3, Behdad Moghtaderi1
1Priority Research Centre for Frontier Energy Technologies and Utilisation, Chemical Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
2Center for Advanced Particle Processing, Chemical Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
3Advanced Thermal Solution Inc., 89-27 Access Road, Norwood 02062, MA, USA

Tài liệu tham khảo

Bahiraei, 2015, Flow and heat transfer characteristics of magnetic nanofluids: a review, J. Magn. Magn. Mater., 374, 125, 10.1016/j.jmmm.2014.08.004 Lee, 2013, Novel perturbations between magnetic nanofluid and the thermal fluidic system at heat dissipation, Microelectron. Eng., 111, 58, 10.1016/j.mee.2013.01.048 Iwamoto, 2011, Magnetically-driven heat transport device using a binary temperature-sensitive magnetic fluid, J. Magn. Magn. Mater., 323, 1378, 10.1016/j.jmmm.2010.11.050 Wang, 2012, Controlled synthesis and size-dependent thermal conductivity of Fe3O4 magnetic nanofluids, Dalton Trans., 41, 896, 10.1039/C1DT11222H Parekh, 2012, Experimental investigation of thermal conductivity of magnetic nanofluids, AIP Conf. Proc., 1447, 385, 10.1063/1.4710041 Gavili, 2012, The thermal conductivity of water base ferrofluids under magnetic field, Exp. Thermal Fluid Sci., 41, 94, 10.1016/j.expthermflusci.2012.03.016 Bahiraei, 2016, Automatic cooling by means of thermomagnetic phenomenon of magnetic nanofluid in a toroidal loop, Appl. Therm. Eng., 107, 700, 10.1016/j.applthermaleng.2016.07.021 Odenbach, 2002 Fadaei, 2017, Convective-heat transfer of magnetic-sensitive nanofluids in the presence of rotating magnetic field, Appl. Therm. Eng., 116, 329, 10.1016/j.applthermaleng.2017.01.072 Lin, 2013, The anti-hepatoma effect of nanosized Mn–Zn ferrite magnetic fluid hyperthermia associated with radiation in vitro and in vivo, Nanotechnology, 24, 255101, 10.1088/0957-4484/24/25/255101 Miaskowski, 2013, Magnetic fluid hyperthermia modeling based on phantom measurements and realistic breast model, IEEE Trans. Biomed. Eng., 60, 1806, 10.1109/TBME.2013.2242071 Syam Sundar, 2013, Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications, Int. Commun. Heat Mass Transfer, 44, 7, 10.1016/j.icheatmasstransfer.2013.02.014 Li, 2005, Experimental investigations on transport properties of magnetic fluids, Exp. Thermal Fluid Sci., 30, 109, 10.1016/j.expthermflusci.2005.03.021 Pastoriza-Gallego, 2011, Enhancement of thermal conductivity and volumetric behavior of FexOy nanofluids, J. Appl. Phys., 110, 014309, 10.1063/1.3603012 Abareshi, 2010, Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids, J. Magn. Magn. Mater., 322, 3895, 10.1016/j.jmmm.2010.08.016 Hong, 2006, Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles, Appl. Phys. Lett., 88, 10.1063/1.2166199 Tsai, 2008, Effect of viscosity of base fluid on thermal conductivity of nanofluids, Appl. Phys. Lett., 93, 233121, 10.1063/1.3046732 Krichler, 2013, Thermal conductivity measurements on ferrofluids with special reference to measuring arrangement, J. Magn. Magn. Mater., 326, 85, 10.1016/j.jmmm.2012.08.037 Shima, 2011, Tuning of thermal conductivity and rheology of nanofluids using an external stimulus, J. Phys. Chem. C, 115, 20097, 10.1021/jp204827q Lajvardi, 2010, Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect, J. Magn. Magn. Mater., 322, 3508, 10.1016/j.jmmm.2010.06.054 Goharkhah, 2016, Experimental investigation on convective heat transfer and hydrodynamic characteristics of magnetite nanofluid under the influence of an alternating magnetic field, Int. J. Therm. Sci., 99, 113, 10.1016/j.ijthermalsci.2015.08.008 Goharkhah, 2015, Convective heat transfer characteristics of magnetite nanofluid under the influence of constant and alternating magnetic field, Powder Technol., 274, 258, 10.1016/j.powtec.2015.01.031 Azizian, 2014, Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids, Int. J. Heat Mass Transf., 68, 94, 10.1016/j.ijheatmasstransfer.2013.09.011 Sha, 2017, Experimental investigation on the convective heat transfer of Fe3O4/water nanofluids under constant magnetic field, Appl. Therm. Eng., 113, 566, 10.1016/j.applthermaleng.2016.11.060 Esmaeili, 2017, The influence of the alternating magnetic field on the convective heat transfer properties of Fe3O4-containing nanofluids through the Neel and Brownian mechanisms, Appl. Therm. Eng., 110, 1212, 10.1016/j.applthermaleng.2016.09.014 Rosen, 2008, Role of exergy in increasing efficiency and sustainability and reducing environmental impact, Energy Policy, 36, 128, 10.1016/j.enpol.2007.09.006 Shojaeizadeh, 2016, Development of a correlation for parameter controlling using exergy efficiency optimization of an Al2O3/water nanofluid based flat-plate solar collector, Appl. Therm. Eng., 98, 1116, 10.1016/j.applthermaleng.2016.01.001 Khairul, 2016, Experimental study on fundamental mechanisms of ferro-fluidics for an electromagnetic energy harvester, Ind. Eng. Chem. Res., 55, 12491, 10.1021/acs.iecr.6b03161 Khairul, 2014, Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids, Int. Commun. Heat Mass Transfer, 50, 8, 10.1016/j.icheatmasstransfer.2013.11.006 Yu, 2003, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanoparticle Res., 5, 167, 10.1023/A:1024438603801 Solangi, 2015, A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids, Energy, 89, 1065, 10.1016/j.energy.2015.06.105 Khairul, 2017, The influence of different flow regimes on heat transfer performance and exergy loss of Al2O3/DI-water and CuO/DI-water nanofluids, Appl. Therm. Eng., 122, 566, 10.1016/j.applthermaleng.2017.05.035 A. International, P.J. Blau, J.R. Davis, ASM Handbook: Properties and Selection: Irons, Steels, and High-performance Alloys, ASM International, 2001. Voldsund, 2014, Exergy destruction and losses on four North Sea offshore platforms: a comparative study of the oil and gas processing plants, Energy, 74, 45, 10.1016/j.energy.2014.02.080 Zimmermann, 2012, Hot water cooled electronics: exergy analysis and waste heat reuse feasibility, Int. J. Heat Mass Transf., 55, 6391, 10.1016/j.ijheatmasstransfer.2012.06.027 Gut, 2004, Thermal model validation of plate heat exchangers with generalized configurations, Chem. Eng. Sci., 59, 4591, 10.1016/j.ces.2004.07.025 Akhavan-Behabadi, 2015, Experimental investigation of thermal–rheological properties and heat transfer behavior of the heat transfer oil–copper oxide (HTO–CuO) nanofluid in smooth tubes, Exp. Thermal Fluid Sci., 68, 681, 10.1016/j.expthermflusci.2015.07.008 Ghajar, 1994, Heat transfer measurements and correlations in the transition region for a circular tube with three different inlet configurations, Exp. Thermal Fluid Sci., 8, 79, 10.1016/0894-1777(94)90075-2 J.H. Lienhard IV, A Heat Transfer Textbook, second ed., Phlogiston Press, 2002. Gnielinski, 1976, New equations for heat and mass-transfer in turbulent pipe and channel flow, Int. Chem. Eng., 16, 359 Kim, 2009, Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions, Curr. Appl. Phys., 9, e119, 10.1016/j.cap.2008.12.047 Khairul, 2016, Effects of surfactant on stability and thermo-physical properties of metal oxide nanofluids, Int. J. Heat Mass Transf., 98, 778, 10.1016/j.ijheatmasstransfer.2016.03.079 Andhariya, 2008, Field induced rotational viscosity of ferrofluid: effect of capillary size and magnetic field direction, J. Colloid Interface Sci., 323, 153, 10.1016/j.jcis.2008.04.018 Khaleduzzaman, 2014, Energy, exergy, and friction factor analysis of nanofluid as a coolant for electronics, Ind. Eng. Chem. Res., 53, 10512, 10.1021/ie501242b Moghaddami, 2011, Second law analysis of nanofluid flow, Energy Convers. Manage., 52, 1397, 10.1016/j.enconman.2010.10.002 Pandey, 2012, Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger, Exp. Thermal Fluid Sci., 38, 248, 10.1016/j.expthermflusci.2011.12.013 Beckwith, 1990