Thermal, morphological, mechanical and aging properties of polylactide blends with poly(ether urethane) based on chain-extension reaction of poly(ethylene glycol) using diisocyanate
Tóm tắt
Poly(ether urethane)s (PEU), including PEUI15 and PEUH15, were prepared through chain-extension reaction of poly(ethylene glycol) (PEG-1500) using diisocyanate as a chain extender, including isophorone diisocyanate (IPDI) and hexamethylene diisocyanate (HDI). These PEUs were used to toughen polylactide (PLA) by physical and reactive blending. Thermal, morphological, mechanical and aging properties of the blends were investigated in detail. These PEUs were partially compatible with PLA. The elongation at break of the reactive blends in the presence of triphenyl phosphate (TPP) for PLA with PEUH15 or PEUI15 was much higher than that of the physical blends. The aging test was carried out at -20 °C for 50 h in order to accelerate the crystallization of PEUs. The PEUs in the PLA/PEU blends produced crystallization and formed new phase separation with PLA, resulting in the declined toughness of blends. Fortunately, under the aging condition, although PEUH15 in blends could also form crystallization, the reactive blend of PLA/PEUH15/TPP(80/20/2) had higher toughness than the other blends. The elongation at break of PLA/PEUH15/TPP(80/20/2) dropped to 287% for the aging blend from 350% for the original blend. The tensile strength and modulus of PLA/PEUH15/TPP blend did not change obviously because of the crystallization of PEUH15.
Tài liệu tham khảo
Datta, R. and Henry, M., J. Chem. Technol. Biotechnol., 2006, 81(7): 1119
Weber, C.J., Haugaard, V., Festersen, R. and Bertelsen, G., Food Addit. Contam., 2002, 19(S): 172
Kimura, K. and Horikoshi, Y., Fujitsu Sci. Tech. J., 2005, 41(2): 173
Serizawa, S., Inoue, K. and Iji, M., J. Appl. Polym. Sci., 2006, 100(1): 618
Sheth, M., Kumar, R.A., Dave, V., Gross, R.A. and McCarthy, S.P., J. Appl. Polym. Sci., 1997, 66(8): 1495
Baiardo, M., Frisoni, G., Scandola, M., Rimelen, M., Lips, D., Ruffieux, K. and Wintermantel, E., J. Appl. Polym. Sci., 2003, 90(7): 1731
Martin, O. and Avérous, L., Polymer, 2001, 42(14): 6209
Hu, Y., Hu, Y. S., Topolkaraev, V., Hiltner, A. and Baer, E., Polymer, 2003, 44(19): 5681
Hu, Y., Rogunova, M., Topolkaraev, V., Hiltner, A. and Baer, E., Polymer, 2003, 44(19): 5701
Hu, Y., Hu, Y.S., Topolkaraev, V., Hiltner, A. and Baer, E., Polymer, 2003, 44(19): 5711
Kulinski, Z. and Piorkowska, E., Polymer, 2005, 46(23): 10290
Feng, L.D., Bian, X.C., Chen, Z.M., Li, G. and Chen, X.S., Polym. Degrad. Stab., 2013, 98 (9): 1591
Deng, Y., Li, S.Q., Zhao, J.B., Zhang, Z.Y., Zhang, J.Y. and Yang, W.T., Chinese J. Polym. Sci., 2015, 33(6): 880
Song, N.J., Jiang, X., Li, J.H., Pang, Y., Li, J.S., Tan, H. and Fu, Q., Chinese J. Polym. Sci., 2013, 31(10): 1451
Yu, R.L., Zhang, L.S., Feng, Y.H., Zhang, R.Y. and Zhu, J., Chinese J. Polym. Sci., 2014, 32(8): 1099
Xing, Q., Li, R.B., Dong, X., Zhang, X.Q., Zhang, L.Y. and Wang, D.J., Chinese J. Polym. Sci., 2015, 33(9): 1294
Feng, L.D., Bian, X.C., Cui, Y., Chen, Z.M., Li, G. and Chen, X.S., Macromol. Chem. Phys., 2013, 214(7): 824
Nijenhuis, A.J., Colstee, E., Grijpma, D.W. and Pennings, A.J., Polymer, 1996, 37(26): 5849
Feng, L.D., Bian, X.C., Li, G., Chen, Z.M., Cui, Y. and Chen, X.S., Polym. Test., 2013, 32(8): 1368