Thermal, morphological, mechanical and aging properties of polylactide blends with poly(ether urethane) based on chain-extension reaction of poly(ethylene glycol) using diisocyanate

Chinese Journal of Polymer Science - Tập 34 - Trang 1070-1078 - 2016
Li-dong Feng1, Sheng Xiang1, Bin Sun1, Yan-long Liu1, Zhi-qiang Sun1, Xin-chao Bian1, Gao Li1, Xue-si Chen1
1Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China

Tóm tắt

Poly(ether urethane)s (PEU), including PEUI15 and PEUH15, were prepared through chain-extension reaction of poly(ethylene glycol) (PEG-1500) using diisocyanate as a chain extender, including isophorone diisocyanate (IPDI) and hexamethylene diisocyanate (HDI). These PEUs were used to toughen polylactide (PLA) by physical and reactive blending. Thermal, morphological, mechanical and aging properties of the blends were investigated in detail. These PEUs were partially compatible with PLA. The elongation at break of the reactive blends in the presence of triphenyl phosphate (TPP) for PLA with PEUH15 or PEUI15 was much higher than that of the physical blends. The aging test was carried out at -20 °C for 50 h in order to accelerate the crystallization of PEUs. The PEUs in the PLA/PEU blends produced crystallization and formed new phase separation with PLA, resulting in the declined toughness of blends. Fortunately, under the aging condition, although PEUH15 in blends could also form crystallization, the reactive blend of PLA/PEUH15/TPP(80/20/2) had higher toughness than the other blends. The elongation at break of PLA/PEUH15/TPP(80/20/2) dropped to 287% for the aging blend from 350% for the original blend. The tensile strength and modulus of PLA/PEUH15/TPP blend did not change obviously because of the crystallization of PEUH15.

Tài liệu tham khảo

Datta, R. and Henry, M., J. Chem. Technol. Biotechnol., 2006, 81(7): 1119 Weber, C.J., Haugaard, V., Festersen, R. and Bertelsen, G., Food Addit. Contam., 2002, 19(S): 172 Kimura, K. and Horikoshi, Y., Fujitsu Sci. Tech. J., 2005, 41(2): 173 Serizawa, S., Inoue, K. and Iji, M., J. Appl. Polym. Sci., 2006, 100(1): 618 Sheth, M., Kumar, R.A., Dave, V., Gross, R.A. and McCarthy, S.P., J. Appl. Polym. Sci., 1997, 66(8): 1495 Baiardo, M., Frisoni, G., Scandola, M., Rimelen, M., Lips, D., Ruffieux, K. and Wintermantel, E., J. Appl. Polym. Sci., 2003, 90(7): 1731 Martin, O. and Avérous, L., Polymer, 2001, 42(14): 6209 Hu, Y., Hu, Y. S., Topolkaraev, V., Hiltner, A. and Baer, E., Polymer, 2003, 44(19): 5681 Hu, Y., Rogunova, M., Topolkaraev, V., Hiltner, A. and Baer, E., Polymer, 2003, 44(19): 5701 Hu, Y., Hu, Y.S., Topolkaraev, V., Hiltner, A. and Baer, E., Polymer, 2003, 44(19): 5711 Kulinski, Z. and Piorkowska, E., Polymer, 2005, 46(23): 10290 Feng, L.D., Bian, X.C., Chen, Z.M., Li, G. and Chen, X.S., Polym. Degrad. Stab., 2013, 98 (9): 1591 Deng, Y., Li, S.Q., Zhao, J.B., Zhang, Z.Y., Zhang, J.Y. and Yang, W.T., Chinese J. Polym. Sci., 2015, 33(6): 880 Song, N.J., Jiang, X., Li, J.H., Pang, Y., Li, J.S., Tan, H. and Fu, Q., Chinese J. Polym. Sci., 2013, 31(10): 1451 Yu, R.L., Zhang, L.S., Feng, Y.H., Zhang, R.Y. and Zhu, J., Chinese J. Polym. Sci., 2014, 32(8): 1099 Xing, Q., Li, R.B., Dong, X., Zhang, X.Q., Zhang, L.Y. and Wang, D.J., Chinese J. Polym. Sci., 2015, 33(9): 1294 Feng, L.D., Bian, X.C., Cui, Y., Chen, Z.M., Li, G. and Chen, X.S., Macromol. Chem. Phys., 2013, 214(7): 824 Nijenhuis, A.J., Colstee, E., Grijpma, D.W. and Pennings, A.J., Polymer, 1996, 37(26): 5849 Feng, L.D., Bian, X.C., Li, G., Chen, Z.M., Cui, Y. and Chen, X.S., Polym. Test., 2013, 32(8): 1368