Thermal maturity and burial history modelling of shale is enhanced by use of Arrhenius time-temperature index and memetic optimizer

Petroleum - Tập 4 - Trang 25-42 - 2018
David A. Wood1
1DWA Energy Limited, Lincoln, United Kingdom

Tài liệu tham khảo

Lopatin, 1971, Temperature and geologic time as factors in coalification (in Russian). Akademiya Nauk SSSR Izvestiya, Seriya Geol., 3, 95 Hood, 1975, Organic metamorphism and the generation of petroleum, AAPG Bull., 59, 986 Tissot, 1975, L’evolution thermique de la matiere organique des sediments: applications d’une simulation mathematizue, Rev. l’Institut Français Pet., 30, 743 Waples, 1980, Time and temperature in petroleum generation and application of Lopatin's technique to petroleum exploration, Am. Assoc. Petroleum Geol. Bull., 64, 916 Lerche, 1984, Determination of paleoheat flux from vitrinite reflectance data, Am. Assoc. Petroleum Geol. Bull., 68, 1704 Lewan, 1985, Evaluation of petroleum generation by hydrous pyrolysis experimentation, Philos. Trans. R. Soc. Lond. Ser. A, 315, 123, 10.1098/rsta.1985.0033 Wood, 1988, Relationships between thermal maturity indices of Arrhenius and lopatin methods: implications for petroleum exploration, Am. Assoc. Petroleum Geol. Bull., 115 Wood, 1990, 56 Larter, 1989, Chemical modelling of vitrinite reflectance evolution, Geol. Rundsch., 78, 349, 10.1007/BF01988369 Sweeney, 1990, Evaluation of a simple model of vitrinite reflectance based on chemical kinetics, Am. Assoc. Petroleum Geol. Bull., 74, 1559 Nielsen, 1991, Vitrinite reflectance: comments on “A chemical kinetic model of vitrinite maturation and reflectance” by Alan K. Burnham and Jerry J. Sweeney, Geochimica Cosmochimica Acta, 55, 639, 10.1016/0016-7037(91)90017-Y Dieckmann, 2005, Modelling petroleum formation from heterogeneous source rocks: the influence of frequency factors on activation energy distribution and geological prediction, Mar. Petroleum Geol., 22, 375, 10.1016/j.marpetgeo.2004.11.002 Lewan, 1997, Experiments on the role of water in petroleum formation, Geochimica Cosmochimica Acta, 61, 3691, 10.1016/S0016-7037(97)00176-2 Huang, 1996, Experimental study of vitrinite maturation: effects of temperature, time, pressure, water, and hydrogen index, Org. Geochem., 24, 233, 10.1016/0146-6380(96)00032-0 He, 2002, Heat flow and thermal maturity modelling in the northern carnarvon basin, north west shelf, Australia, Mar. Petroleum Geol., 19, 1073, 10.1016/S0264-8172(03)00003-5 Nunn, 2012, Burial and Thermal History of the haynesville shale: implications for overpressure, gas generation, and natural hydrofracture, Gulf Coast Assoc. Geol. Soc. (GCAGS) J., 81 Yang, 2016, Origin of over-pressure in clastic rocks in Yuanba area, northeast Sichuan Basin, China, J. Nat. Gas Sci. Eng., 30, 90, 10.1016/j.jngse.2016.01.043 Yang, 2017, Geochemical characteristics and origin of natural gas from Wufeng-Longmaxi shales of the Fuling gas field, Sichuan Basin (China), Int. J. Coal Geol., 171, 1, 10.1016/j.coal.2016.12.003 Mohamed, 2016, Thermal modelling of the Melut basin Sudan and South Sudan: implications for hydrocarbon generation and migration, Mar. Petrol. Geol., 77, 746, 10.1016/j.marpetgeo.2016.07.007 Pepper, 1995, Simple kinetic models of petroleum formation: Part I -Oil and gas generation from kerogen, Mar. Petrol. Geol., 12, 291, 10.1016/0264-8172(95)98381-E Cornford, 2009, Source rocks and hydrocarbons of the north sea, chapter 11, 376 Stainforth, 2009, Practical kinetic modeling of petroleum generation and expulsion, Mar. Petroleum Geol., 26, 552, 10.1016/j.marpetgeo.2009.01.006 Ho, 1998, Comparative studies of pre- and post-drilling modelled thermal conductivity and maturity data with post-drilling results: implications for basin modelling and hydrocarbon exploration, vol. 141, 187 Ungerer, 1990, State of the art of research in kinetic modelling of oil formation and expulsion, Org. Geochem, 16, 1, 10.1016/0146-6380(90)90022-R Peters, 2015, Petroleum generation kinetics: single versus multiple heating-ramp open-system pyrolysis, Am. Assoc. Petrol. Geol. Bull., 99, 591 Lewan, 2002, Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis, Org. Geochem., 33, 1457, 10.1016/S0146-6380(02)00182-1 Nielsen, 1991, Confidence limits on kinetic models of primary cracking and implication for the hydrocarbon generation, Mar. Petrol. Geol., 8, 483, 10.1016/0264-8172(91)90070-H Arrhenius, 1889, Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren, Z Phys. Chem., 4, 226 Gorbachev, 1975, A solution of the exponential integral in the non-isothermal kinetics for linear heating, J. Therm. Analysis, 8, 349, 10.1007/BF01904012 Yang, 2009, Firefly algorithms for multimodal optimization, in: stochastic algorithms: foundations and applications, SAGA, Lect. Notes Comput. Sci., 5792, 169, 10.1007/978-3-642-04944-6_14 Yang, 2013, Firefly algorithm: recent advances and applications, Int. J. Swarm Intell., 1, 36, 10.1504/IJSI.2013.055801 Arora, 2013, The firefly optimization algorithm: convergence analysis and parameter selection, Int. J. Comput. Appl., 69, 48 Arora, 2014, Performance research on firefly optimization algorithm with mutation, 168 Pal, 2012, Comparative study of firefly algorithm and particle swarm optimization for noisy non-linear optimization problems, I.J. Intell. Syst. Appl., 10, 50 Wood, 2016, Hybrid cuckoo search optimization algorithms applied to complex wellbore trajectories aided by dynamic, chaos-enhanced, fat-tailed distribution sampling and metaheuristic profiling, J. Nat. Gas Sci. Eng., 34, 236, 10.1016/j.jngse.2016.06.060