Quản lý nhiệt đối với ảnh hưởng của nguồn từ ngang đến sự đối lưu tự nhiên của nanofluid trong một khoang rỗng gợn sóng

Journal of Thermal Analysis and Calorimetry - Tập 143 - Trang 2851-2865 - 2020
Hudhaifa Hamzah1, Ahmed Albojamal2, Besir Sahin1, Kambiz Vafai2
1Departmentt of Mechanical Engineering, College of Engineering, Cukurova University, Adana, Turkey
2Departmentt of Mechanical Engineering, College of Engineering, University of California-Riverside, Riverside, USA

Tóm tắt

Nghiên cứu vận chuyển nhiệt của sự đối lưu tự nhiên trong nanofluid trong một khoang rỗng gợn sóng chịu tác động của một nguồn từ trường đồng đều bên ngoài được thực hiện thông qua phương pháp số. Nhiều yếu tố liên quan đến các số lượng Darcy (Da = 10−4–10−2), Hartmann (Ha = 0–40), Rayleigh (Ra = 104–107), Prandtl (Pr = 0.71–7) và số điện sóng (n = 3), cùng với biên độ sóng (A = 0.025–0.1) và nồng độ thể tích hạt (\phi = 0, 2 và 4%) đã được khảo sát. Mô hình Darcy mở rộng Brinkmann–Forchheimer được áp dụng, và các phương trình điều khiển được giải bằng cách sử dụng chương trình dựa trên phương pháp sai phân ADI của chúng tôi. Độ chính xác của mã chương trình đã được xác thực thành công với tài liệu mở. Kết quả cho thấy rằng đối với Ra > 105 và Da < 10−3, từ trường không đóng vai trò lớn trong năng lượng nhiệt đối lưu, trong khi ở Ha cao và Ra thấp, cường độ dẫn nhiệt tăng lên. Sự gợn sóng của bề mặt và số Darcy đều có ảnh hưởng đáng kể đến việc giảm chuyển giao nhiệt nếu cần cách nhiệt. Hơn nữa, một giá trị quan trọng của Ra = 105 được quan sát, tại đó số Nusselt trung bình giảm mặc dù nồng độ thể tích hạt tăng, đặc biệt ở những giá trị Hartmann cao.

Từ khóa

#đối lưu tự nhiên #nanofluid #khoang rỗng gợn sóng #từ trường #vận chuyển nhiệt

Tài liệu tham khảo

Giwa SO, Sharifpur M, Ahmadi MH, Meyer JP. A review of magnetic field influence on natural convection heat transfer performance of nanofluids in square cavities. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09832-3. Randall KR, Mitchell JW, El-Wakil MM. Natural convection heat transfer characteristics of flat plate enclosures. J Heat Transf Trans ASME. 1979;101:120–5. Sunil, Varun, Sharma N. Experimental investigation of the performance of an indirect-mode natural convection solar dryer for drying fenugreek leaves. J Therm Anal Calorim. 2014;118:523–31. Haghighi A, Albojamal A, Vafai K. Heat removal enhancement in a channel with a single or an array of metallic foam obstacles. Int J Therm Sci. 2019;149:106057. Tong TW, Subramanian E. Natural Convection in Rectangular Enclosures Partially Filled With a Porous Medium. 1983;1:331–8. Wu F, Lu D, Wang G. Numerical analysis of natural convection in a porous cavity with the sinusoidal thermal boundary condition using a thermal nonequilibrium model. Numer Heat Transf Part A Appl. 2016;69:1280–96. Garandet JP, Alboussiere T, Moreau R. Buoyancy driven convection in a rectangular enclosure with a transverse magnetic field. Int J Heat Mass Transf. 1992;35:741–8. Daneshvar Garmroodi MR, Ahmadpour A, Hajmohammadi MR, Gholamrezaie S. Natural convection of a non-Newtonian ferrofluid in a porous elliptical enclosure in the presence of a non-uniform magnetic field. J Therm Anal Calorim. 2019;. Rashidi S, Esfahani JA, Maskaniyan M. Applications of magnetohydrodynamics in biological systems-a review on the numerical studies. J Magn Magn Mater. 2017;439:358–72. Kumar BVR. A study of free convection induced by a vertical wavy surface with heat flux in a porous enclosure. Numer Heat Transf Part A Appl. 2000;37:493–510. Das D, Biswal P, Roy M, Basak T. Role of the importance of “Forchheimer term” for visualization of natural convection in porous enclosures of various shapes. Int J Heat Mass Transf. 2016;97:1044–68. Salari M, Rashidi MM, Malekshah EH, Malekshah MH. Numerical analysis of turbulent/transitional natural convection in trapezoidal enclosures. Int J Numer Methods Heat Fluid Flow. 2017;27:2902–23. Albojamal A, Hamzah H, Haghighi A, Vafai K. Analysis of nanofluid transport through a wavy channel. Numer Heat Transf Part A Appl. 2017;72:869–90. Hamzah H, Hasan SI, Küçüka S. Numerical study of thermal transport in a flat-plate solar collector using novel absorber plate. Green Energy Technol. 2020;32:649–62. Khanafer K, Al-Azmi B, Marafie A, Pop I. Non-Darcian effects on natural convection heat transfer in a wavy porous enclosure. Int J Heat Mass Transf. 2009;52:1887–96. Sathiyamoorthy M, Basak T, Roy S, Pop I. Steady natural convection flow in a square cavity filled with a porous medium for linearly heated side wall(s). Int J Heat Mass Transf. 2007;50:1892–901. Basak T, Roy S, Paul T, Pop I. Natural convection in a square cavity filled with a porous medium: effects of various thermal boundary conditions. Int J Heat Mass Transf. 2006;49:1430–41. Mahmud S, Das PK, Hyder N, Sadrul Islam AKM. Free convection in an enclosure with vertical wavy walls. Int J Therm Sci. 2002;41:440–6. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Am Soc Mech Eng Fluids Eng Div FED. 1995;231:99–105. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46:3639–53. Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. Nanotechnol Energy. 2018;54:279–332. Jang SP, Choi SU. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84:4316–8. Ho CJ, Chen MW, Li ZW. Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity. Int J Heat Mass Transf. 2008;51:4506–16. Saleh H, Roslan R, Hashim I. Natural convection heat transfer in a nanofluid-filled trapezoidal enclosure. Int J Heat Mass Transf. 2011;54:194–201. Nasrin R, Alim MA, Chamkha AJ. Combined convection flow in triangular wavy chamber filled with water-CuO nanofluid: effect of viscosity models. Int Commun Heat Mass Transf. 2012;39:1226–36. Albojamal A, Vafai K. Analysis of single phase, discrete and mixture models, in predicting nanofluid transport. Int J Heat Mass Transf. 2017;114:225–37. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.030. Sheikholeslami M, Ellahi R, Hassan M, Soleimani S. A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder. Int J Numer Methods Heat Fluid Flow. 2014;24:1906–27. Shafahi M, Bianco V, Vafai K, Manca O. An investigation of the Thermal Performance of Cylindrical Heat Pipes using Nanofluids. Nanotechnol Energy. 2018;53:257–78. Nemati H, Farhadi M, Sedighi K, Ashorynejad HR, Fattahi E. Magnetic field effects on natural convection flow of nanofluid in a rectangular cavity using the Lattice Boltzmann model. Sci Iran. 2012;19:303–10. Mehryan SAM, Izadi M, Chamkha AJ, Sheremet MA. Natural convection and entropy generation of a ferrofluid in a square enclosure under the effect of a horizontal periodic magnetic field. J Mol Liq. 2018;263:510–25. Zhou WN, Yan YY. Numerical investigation of the effects of a magnetic field on nanofluid flow and heat transfer by the lattice Boltzmann method. Numer Heat Transf Part A Appl. 2015;68:1–16. Xu HJ, Xing ZB, Wang FQ, Cheng ZM. Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: fundamentals and applications. Chem Eng Sci. 2019;195:462–83. Sheremet MA, Grosan T, Pop I. Free Convection in a Square Cavity Filled with a Porous Medium Saturated by Nanofluid Using Tiwari and Das’ Nanofluid Model. Transp Porous Media. 2015;106:595–610. Rashidi S, Bovand M, Esfahani JA. Opposition of Magnetohydrodynamic and AL2O3-water nanofluid flow around a vertex facing triangular obstacle. J Mol Liq. 2016;215:276–84. Vafai K, Tien CL. Boundary and inertia effects on convective mass transfer in porous media. Int J Heat Mass Transf. 1982;25:1183–90. Amiri A, Vafai K. Transient analysis of incompressible flow through a packed bed. Int J Heat Mass Transf. 1998;41:4259–79. Vafai K. Convective flow and heat transfer in variable-porosity media. J Fluid Mech. 1984;147:233–59. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43:3701–7. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571. James Clerk M. A treatise on electricity and magnetism. A Treatise Electr Magn. 2010;9781108014:1–442. Kollmann W. Computational fluid dynamics. Volume 2. 2000. Lauriat G, Prasad V. Natural Convection in a Vertical Porous Cavity: a Numerical Study for Brinkman-Extended Darcy Formulation. Am Soc Mech Eng Heat Transf Div HTD. 1986;56:13–22. Nithiarasu P, Seetharamu KN, Sundararajan T. Natural convective heat transfer in a fluid saturated variable porosity medium. Int J Heat Mass Transf. 1997;40:3955–67. Ghasemi B, Aminossadati SM, Raisi A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci. 2011;50:1748–56. Sparrow EM, Abraham JP. A new buoyancy model replacing the standard pseudo-density difference for internal natural convection in gases. Int J Heat Mass Transf. 2003;46:3583–91.