Thermal improvement of linear Fresnel solar system utilizing Al2O3-water nanofluid and multi-way twisted tape
Tóm tắt
Từ khóa
Tài liệu tham khảo
Al Moussawi, 2017, Selection based on differences between cogeneration and trigeneration in various prime mover technologies, Renew. Sustain. Energy Rev., 74, 491, 10.1016/j.rser.2017.02.077
Murugan, 2016, Tri and polygeneration systems-A review, Renew. Sustain. Energy Rev., 60, 1032, 10.1016/j.rser.2016.01.127
Rong, 2017, Polygeneration systems in buildings: a survey on optimization approaches, Energy Build., 151, 439, 10.1016/j.enbuild.2017.06.077
Nathan, 2018, Solar thermal hybrids for combustion power plant: a growing opportunity, Prog. Energy Combust. Sci., 64, 4, 10.1016/j.pecs.2017.08.002
Kalogirou, 2016, Exergy analysis of solar thermal collectors and processes, Prog. Energy Combust. Sci., 56, 106, 10.1016/j.pecs.2016.05.002
Wu, 2006, Combined cooling, heating and power: a review, Prog. Energy Combust. Sci., 32, 459, 10.1016/j.pecs.2006.02.001
Morin, 2012, Comparison of linear fresnel and parabolic trough collector power plants, Sol. Energy, 86, 1, 10.1016/j.solener.2011.06.020
Bellos, 2018, Assessment of linear solar concentrating technologies for Greek climate, Energy Convers. Manag., 171, 1502, 10.1016/j.enconman.2018.06.076
Zhu, 2014, History, current state, and future of linear Fresnel concentrating solar collectors, Sol. Energy, 103, 639, 10.1016/j.solener.2013.05.021
Sundar, 2020, Efficiency, energy and economic analysis of twisted tape inserts in a thermosyphon solar flat plate collector with Cu nanofluids, Renew. Energy Focus, 35, 10, 10.1016/j.ref.2020.06.004
Choi, 1995
Godson, 2010, Enhancement of heat transfer using nanofluids—an overview, Renew. Sustain. Energy Rev., 14, 629, 10.1016/j.rser.2009.10.004
Li, 2020, Transient pool boiling and particulate deposition of copper oxide nano-suspensions, Int. J. Heat Mass Tran., 155, 119743, 10.1016/j.ijheatmasstransfer.2020.119743
Paul, 2010, Techniques for measuring the thermal conductivity of nanofluids: a review, Renew. Sustain. Energy Rev., 14, 1913, 10.1016/j.rser.2010.03.017
Trisaksri, 2007, Critical review of heat transfer characteristics of nanofluids, Renew. Sustain. Energy Rev., 11, 512, 10.1016/j.rser.2005.01.010
Eastman, 1996
Raja, 2016, Review on nanofluids characterization, heat transfer characteristics and applications, Renew. Sustain. Energy Rev., 64, 163, 10.1016/j.rser.2016.05.079
Gupte, 1995, Role of micro-convection due to non-affine motion of particles in a mono-disperse suspension, Int. J. Heat Mass Tran., 38, 2945, 10.1016/0017-9310(95)00060-M
Srinivas, 2016, Nanofluids with CNTs for automotive applications, Heat Mass Tran., 52, 701, 10.1007/s00231-015-1588-1
Li, 2020, Pool boiling heat transfer to CuO-H2O nanofluid on finned surfaces, Int. J. Heat Mass Tran., 156, 119780, 10.1016/j.ijheatmasstransfer.2020.119780
Cheng, 2018, A novel optical optimization model for linear Fresnel reflector concentrators, Renew. Energy, 129, 486, 10.1016/j.renene.2018.06.019
Liu, 2014, Thermodynamic and optical analysis for a CPV/T hybrid system with beam splitter and fully tracked linear Fresnel reflector concentrator utilizing sloped panels, Sol. Energy, 103, 191, 10.1016/j.solener.2014.01.047
Zhu, 2017, Design and thermal performances of a scalable linear Fresnel reflector solar system, Energy Convers. Manag., 146, 174, 10.1016/j.enconman.2017.05.031
Barbón, 2020, Influence of solar tracking error on the performance of a small-scale linear Fresnel reflector, Renew. Energy, 162, 43, 10.1016/j.renene.2020.07.132
Khandelwal, 2021, Comparative analysis of the linear Fresnel reflector assisted solar cycle on the basis of heat transfer fluids, Mater. Today Proc., 38, 74, 10.1016/j.matpr.2020.05.792
Hachicha, 2020, On the thermal and thermodynamic analysis of parabolic trough collector technology using industrial-grade MWCNT based nanofluid, Renew. Energy, 161, 1303, 10.1016/j.renene.2020.07.096
Abubakr, 2020, An intuitive framework for optimizing energetic and exergetic performances of parabolic trough solar collectors operating with nanofluids, Renew. Energy, 157, 130, 10.1016/j.renene.2020.04.160
Bellos, 2018, Thermal, hydraulic and exergetic evaluation of a parabolic trough collector operating with thermal oil and molten salt based nanofluids, Energy Convers. Manag., 156, 388, 10.1016/j.enconman.2017.11.051
Bretado de los Rios, 2018, Thermal performance of a parabolic trough linear collector using Al2O3/H2O nanofluids, Renew. Energy, 122, 665, 10.1016/j.renene.2018.01.094
Azmi, 2014, Comparison of convective heat transfer coefficient and friction factor of TiO2 nanofluid flow in a tube with twisted tape inserts, Int. J. Therm. Sci., 81, 84, 10.1016/j.ijthermalsci.2014.03.002
Piriyarungrod, 2018, Intensification of thermo-hydraulic performance in heat exchanger tube inserted with multiple twisted-tapes, Appl. Therm. Eng., 136, 516, 10.1016/j.applthermaleng.2018.02.097
Naik, 2014, Comparative study on thermal performance of twisted tape and wire coil inserts in turbulent flow using CuO/water nanofluid, Exp. Therm. Fluid Sci., 57, 65, 10.1016/j.expthermflusci.2014.04.006
Eiamsa-ard, 2012, Single-phase heat transfer of CuO/water nanofluids in micro-fin tube equipped with dual twisted-tapes, Int. Commun. Heat Mass Tran., 39, 1453, 10.1016/j.icheatmasstransfer.2012.08.007
Singh, 2010, Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers, Appl. Energy, 87, 541, 10.1016/j.apenergy.2009.08.019
Negi, 1989, Optical and thermal performance evaluation of a linear fresnel reflector solar concentrator, Sol. Wind Technol., 6, 589, 10.1016/0741-983X(89)90095-7
Singh, 1999, Technical note: performance study of a linear Fresnel concentrating solar device, Renew. Energy, 18, 409, 10.1016/S0960-1481(98)00805-2
Modest, 2013
ANSYS® Academic Research, Release 18.1, ANSYS FLUENT, Theory Guide, ANSYS, Inc.
Versteeg, 2007
Flows-model, 1994
Koo, 2005, Laminar nanofluid flow in microheat-sinks, Int. J. Heat Mass Tran., 48, 2652, 10.1016/j.ijheatmasstransfer.2005.01.029
Pak, 1998, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle, Exp. Heat Tran., 11, 151, 10.1080/08916159808946559
Koo, 2004, Viscous dissipation effects in micro tubes and micro channels, Int. J. Heat Mass Tran., 47, 3159, 10.1016/j.ijheatmasstransfer.2004.02.017
Koo, 2004
Prasher, 2005, Thermal conductivity of nano scale colloidal solution, Phys. Rev. Lett., 94, 10.1103/PhysRevLett.94.025901
Jang, 2004, The role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett., 84, 4316, 10.1063/1.1756684
J. Li, Computational analysis of nanofluid flow in micro channels with applications to micro-heat sinks and bio-MEMS, PhD Thesis NC State University, Raleigh, NC, the United States; 2008.
Manglik, 1993, Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: Part II—transition and turbulent flows, J. Heat Tran., 115, 890, 10.1115/1.2911384
Mathur, 1991, Optical design and concentration characteristics of linear Fresnel reflector solar concentrators—II. Mirror elements of equal width, Energy Convers. Manag., 31, 221, 10.1016/0196-8904(91)90076-U
Kim, 2009, Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions, Curr. Appl. Phys., 9, 119, 10.1016/j.cap.2008.12.047
Jafaryar, 2019
Duffie, 2013, Optical performance of concentrating collectors