Thermal fluctuations and effective bending stiffness of elastic thin sheets and graphene: A nonlinear analysis

Journal of the Mechanics and Physics of Solids - Tập 107 - Trang 294-319 - 2017
Fatemeh Ahmadpoor1, Peng Wang2, Rui Huang2, Pradeep Sharma1,3
1Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
2Department of Aerospace Engineering and Engineering Mechanics, University of Texas, Austin, TX 78712, USA
3Department of Physics, University of Houston, Houston, TX 77204, USA

Tài liệu tham khảo

Abbena, 2006 Ahmadpoor, 2017, A perspective on the statistical mechanics of 2d materials, Extreme Mech. Lett., 14, 38, 10.1016/j.eml.2016.12.007 Ahmadpoor, 2015, Flexoelectricity in two-dimensional crystalline and biological membranes, Nanoscale, 7, 16555, 10.1039/C5NR04722F Ahmadpoor, 2016, Thermal fluctuations of vesicles and nonlinear curvature elasticity – implications for size-dependent renormalized bending rigidity and vesicle size distribution, Soft Matter, 12, 2523, 10.1039/C5SM02769A Akinwande, 2017, A review on mechanics and mechanical properties of 2d materials – graphene and beyond, Extreme Mech. Lett, 10.1016/j.eml.2017.01.008 Aleksandr, 1949 Amit, 2005 Aronovitz, 1988, Fluctuations of solid membranes, Phys. Rev. Lett., 60, 2634, 10.1103/PhysRevLett.60.2634 Auth, 2007, Fluctuations of coupled fluid and solid membranes with application to red blood cells, Phys. Rev. E, 76, 051910, 10.1103/PhysRevE.76.051910 Bhimanapati, 2015, Recent advances in two-dimensional materials beyond graphene, ACS Nano, 9, 11509, 10.1021/acsnano.5b05556 Boal, 2012 Brenner, 2002, A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons, J. Phys. Condens. Matter, 14, 783, 10.1088/0953-8984/14/4/312 Butler, 2013, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano, 7, 2898, 10.1021/nn400280c Canham, 1970, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, J. Theor. Biol., 26, 61, 10.1016/S0022-5193(70)80032-7 Deserno, M., 2007. Fluid Lipid Membranes – A Primer. See http://www.cmu.edu/biolphys/deserno/pdf/membrane_theory.pdf. Dimova, 2014, Recent developments in the field of bending rigidity measurements on membranes, Adv. Colloid Interface Sci., 208, 225, 10.1016/j.cis.2014.03.003 Doussal, 1992, Self-consistent theory of polymerized membranes, Phys. Rev. Lett., 69, 1209, 10.1103/PhysRevLett.69.1209 Engelhardt, 1985, Bilayer bending elasticity measured by fourier analysis of thermally excited surface undulations of flaccid vesicles, J. Phys. Lett., 46, 395, 10.1051/jphyslet:01985004608039500 Farago, 2005, Pore formation in fluctuating membranes, J. Chem. Phys., 122, 044901, 10.1063/1.1835952 Fasolino, 2007, Intrinsic ripples in graphene, Nat. Mater., 6, 858, 10.1038/nmat2011 Faucon, 1989, Bending elasticity and thermal fluctuations of lipid membranes. Theoretical and experimental requirements, J. Phys., 50, 2389, 10.1051/jphys:0198900500170238900 Feng, 2011, Graphene based gene transfection, Nanoscale, 3, 1252, 10.1039/c0nr00680g Fisher, 1993, Force between biological surfaces, J. Chem. Soc. Faraday Trans., 89, 2567, 10.1039/ft9938902567 Freund, 2013, Entropic pressure between biomembranes in a periodic stack due to thermal fluctuations, Proc. Natl. Acad. Sci., 110, 2047, 10.1073/pnas.1220968110 Gao, 2014, Probing mechanical principles of cell-nanomaterial interactions, J. Mech. Phys. Solids, 62, 312, 10.1016/j.jmps.2013.08.018 Gao, 2014, Thermomechanics of monolayer graphene: rippling, thermal expansion and elasticity, J. Mech. Phys. Solids, 66, 42, 10.1016/j.jmps.2014.01.011 Goldenfeld, N, 1992. Lectures on Phase Transitions and the Renormalization Group. Gurtin, 2010 Helfrich, 1973, Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforschung C, 28, 693, 10.1515/znc-1973-11-1209 Helfrich, 1986, Size distributions of vesicles: the role of the effective rigidity of membranes, J. Phys., 47, 321, 10.1051/jphys:01986004702032100 Huang, 2017, Formation and size distribution of self-assembled vesicles, Proc. Natl. Acad. Sci., 114, 2910, 10.1073/pnas.1702065114 Kalbacova, 2010, Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells, Carbon, 48, 4323, 10.1016/j.carbon.2010.07.045 Kim, 2009, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706, 10.1038/nature07719 Kit, 2012, Twisting graphene nanoribbons into carbon nanotubes, Phys. Rev. B, 85, 085428, 10.1103/PhysRevB.85.085428 Kittel, 2004 Kleinert, 2009 Koskinen, 2010, Approximate modeling of spherical membranes, Phys. Rev. B, 82, 235420, 10.1103/PhysRevB.82.235420 Kostarelos, 2014, Exploring the interface of graphene and biology, Science, 344, 261, 10.1126/science.1246736 Kudin, 2001, C 2 f, bn, and c nanoshell elasticity from ab initio computations, Phys. Rev. B, 64, 235406, 10.1103/PhysRevB.64.235406 Kuila, 2011, Recent advances in graphene-based biosensors, Biosens. Bioelectron., 26, 4637, 10.1016/j.bios.2011.05.039 Landau, 1959, Course of theoretical physics, 7 Li, 2013, Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites, Proc. Natl. Acad. Sci., 110, 12295, 10.1073/pnas.1222276110 Liang, 2016, A fluctuating elastic plate and a cell model for lipid membranes, J. Mech. Phys. Solids, 90, 29, 10.1016/j.jmps.2016.02.019 Liang, 2016, A fluctuating elastic plate model applied to graphene, J. Appl. Mech., 83, 081008, 10.1115/1.4033681 Lindsay, 2011, Flexural phonons and thermal transport in multilayer graphene and graphite, Phys. Rev. B, 83, 235428, 10.1103/PhysRevB.83.235428 Lipowsky, 1986, Unbinding transitions of interacting membranes, Phys. Rev. Lett., 56, 2541, 10.1103/PhysRevLett.56.2541 Lipowsky, 1991, Adhesion of vesicles and membranes, Mol. Cryst. Liquid Cryst., 202, 17, 10.1080/00268949108035656 Lu, 2009, Elastic bending modulus of monolayer graphene, J. Phys. D: Appl. Phys., 42, 102002, 10.1088/0022-3727/42/10/102002 Lu, 2009, Nonlinear mechanics of single-atomic-layer graphene sheets, Int. J. Appl. Mech., 1, 443, 10.1142/S1758825109000228 Mermin, 1968, Crystalline order in two dimensions, Phys. Rev., 176, 250, 10.1103/PhysRev.176.250 Meyer, 2007, The structure of suspended graphene sheets, Nature, 446, 60, 10.1038/nature05545 Morozov, 2008, Giant intrinsic carrier mobilities in graphene and its bilayer, Physical Rev. Lett., 100, 016602, 10.1103/PhysRevLett.100.016602 Nayak, 2011, Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells, ACS Nano, 5, 4670, 10.1021/nn200500h Nelson, 1987, Fluctuations in membranes with crystalline and hexatic order, J. Phys., 48, 1085, 10.1051/jphys:019870048070108500 Nelson, 2004 Nelson, 2004 Neto, 2009, The electronic properties of graphene, Rev. Mod. Phys., 81, 109, 10.1103/RevModPhys.81.109 Novoselov, 2005, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA, 102, 10451, 10.1073/pnas.0502848102 Paczuski, 1988, Landau theory of the crumpling transition, Phys. Rev. Lett., 60, 2638, 10.1103/PhysRevLett.60.2638 Pécréaux, 2004, Refined contour analysis of giant unilamellar vesicles, Eur. Phys. J. E, 13, 277, 10.1140/epje/i2004-10001-9 Phillips, 2012 Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039 Roldán, 2011, Suppression of anharmonicities in crystalline membranes by external strain, Phys. Rev. B, 83, 174104, 10.1103/PhysRevB.83.174104 Safran, 1994, 90 Seifert, 1997, Configurations of fluid membranes and vesicles, Adv. Phys., 46, 13, 10.1080/00018739700101488 Sharma, 2013, Entropic force between membranes reexamined, Proc. Natl. Acad. Sci., 110, 1976, 10.1073/pnas.1222033110 Sun, 2008, Nano-graphene oxide for cellular imaging and drug delivery, Nano Res., 1, 203, 10.1007/s12274-008-8021-8 Tuckerman, 1992, Reversible multiple time scale molecular dynamics, J. Chem. Phys., 97, 1990, 10.1063/1.463137 Wan, D., Nelson, D. R., Bowick, M. J., 2017. Thermal Stiffening of Clamped Elastic Ribbons. ArXiv preprint arXiv:1702.01863. Wang, 2013, Cellular entry of graphene nanosheets: the role of thickness, oxidation and surface adsorption, RSC Adv., 3, 15776, 10.1039/c3ra40392k Wei, 2012, Bending rigidity and gaussian bending stiffness of single-layered graphene, Nano Lett., 13, 26, 10.1021/nl303168w Weiner, 2012 Xu, 2010, Geometry controls conformation of graphene sheets: membranes, ribbons, and scrolls, ACS Nano, 4, 3869, 10.1021/nn100575k Yang, 2011, Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and ph-sensitivity, J. Mater. Chem., 21, 3448, 10.1039/C0JM02494E Zakharchenko, 2010, Self-consistent screening approximation for flexible membranes: application to graphene, Physical Review B, 82, 125435, 10.1103/PhysRevB.82.125435 Zhong-Can, 1989, Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders, Phys. Rev. A, 39, 5280, 10.1103/PhysRevA.39.5280 Zhu, 2016, Nanomechanical mechanism for lipid bilayer damage induced by carbon nanotubes confined in intracellular vesicles, Proc. Natl. Acad. Sci., 113, 12374, 10.1073/pnas.1605030113