Thermal evolution of graptolite and solid bitumen properties at high maturity under natural and artificial conditions

International Journal of Coal Geology - Tập 273 - Trang 104269 - 2023
Jianyang Song1,2,3, Paul C. Hackley1, Margaret M. Sanders1, Aaron M. Jubb1, Qingyong Luo3
1U.S. Geological Survey, Reston, Va. USA
2Faculty of Geographical Science, Beijing Normal University, Beijing, PRC
3State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China

Tài liệu tham khảo

Alexander, 2011, Shale gas revolution, Oilfield Rev., 23, 40 ASTM, 2014 ASTM, 2015 Bernard, 2014, Thermal maturation of gas shale systems, Annu. Rev. Earth Planet. Sci., 42, 635, 10.1146/annurev-earth-060313-054850 Bertrand, 2003, Cambrian–Ordovician shales in the Humber Zone: thermal maturation and source rock potential, Bull. Can. Petrol. Geol., 51, 213, 10.2113/51.3.213 Beyssac, 2002, Raman spectra of carbonaceous material in metasediments: a new geothermometer, J. Metamorph. Geol., 20, 859, 10.1046/j.1525-1314.2002.00408.x Beyssac, 2003, On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy, Spectrochim. Acta A Mol. Biomol. Spectrosc., 59, 2267, 10.1016/S1386-1425(03)00070-2 Birdwell, 2021, Compositional evolution of organic matter in Boquillas Shale across a thermal gradient at the single particle level, Int. J. Coal Geol., 248, 10.1016/j.coal.2021.103859 Bonoldi, 2016, Vibrational spectroscopy assessment of kerogen maturity in organic-rich source rocks, Vib. Spectrosc., 87, 14, 10.1016/j.vibspec.2016.08.014 Buchardt, 1990, Reflectance of vitrinite-like macerals as a thermal maturity index for Cambrian-Ordovician Alum Shale, southern Scandinavia, AAPG Bull., 74, 394 Burnham, 2017 Burnham, 2019, Kinetic models of vitrinite, kerogen, and bitumen reflectance, Org. Geochem., 131, 50, 10.1016/j.orggeochem.2019.03.007 Bustin, 1989, Optical properties and chemistry of graptolite periderm following laboratory simulated maturation, Org. Geochem., 14, 355, 10.1016/0146-6380(89)90001-6 Caricchi, 2016, Thermal maturity of Silurian deposits in the Baltic Syneclise (on-shore polish Baltic Basin): contribution to unconventional resources assessment, Ital. J. Geosci., 135, 383, 10.3301/IJG.2015.16 Carr, 1990, The relationship between aromaticity, vitrinite reflectance and maceral composition of coals: implications for the use of vitrinite reflectance as a maturation parameter, Org. Geochem., 16, 313, 10.1016/0146-6380(90)90051-Z Chen, 2017, Relationship between pore characteristics and occurrence state of shale gas: a case study of lower Silurian Longmaxi shale in the Upper Yangtze Platform, South China, Interpretation, 5, T437, 10.1190/INT-2016-0191.1 Chen, 2019, Identification of organic matter components and organic pore characteristics of marine shale: a case study of Wufeng-Longmaxi shale in southern Sichuan Basin, China, Mar. Pet. Geol., 109, 56, 10.1016/j.marpetgeo.2019.06.002 Chen, 2022, Maturity assessment of solid bitumen in the Sinian carbonate reservoirs of the eastern and central Sichuan Basin, China: application for hydrocarbon generation modelling, Geol. J., 57, 4662, 10.1002/gj.4564 Cheshire, 2017, Assessing thermal maturity beyond the reaches of vitrinite reflectance and Rock-Eval pyrolysis: a case study from the Silurian Qusaiba formation, Int. J. Coal Geol., 180, 29, 10.1016/j.coal.2017.07.006 Cole, 1994, Graptolite-chitinozoan reflectance and its relationship to other geochemical maturity indicators in the Silurian Qusaiba Shale, Saudi Arabia, Energy Fuel, 8, 1443, 10.1021/ef00048a035 Craddock, 2017, Kerogen thermal maturity and content of organic-rich mudrocks determined using stochastic linear regression models applied to diffuse reflectance IR Fourier transform spectroscopy (DRIFTS), Org. Geochem., 110, 122, 10.1016/j.orggeochem.2017.05.005 Curiale, 2016, Organic geochemical applications to the exploration for source-rock reservoirs: a review, J. Unconvent. Oil Gas Resour., 13, 1, 10.1016/j.juogr.2015.10.001 Curtis, 2002, Fractured shale-gas systems, AAPG Bull., 86, 1921 Delarue, 2018, What is the meaning of hydrogen-to-carbon ratio determined in Archean organic matter?, Org. Geochem., 122, 140, 10.1016/j.orggeochem.2018.05.013 Dow, 1977, Kerogen studies and geological interpretations, J. Geochem. Explor., 7, 79, 10.1016/0375-6742(77)90078-4 Dreier, 2021, Petroleum Geochemistry Research Laboratory Programmed Pyrolysis Method. U.S. Geological Survey, U.S, Geol. Surv. Webpage Eichmann, 2018, Non-destructive investigations of the thermal maturity and mechanical properties of source rocks, J. Pet. Geol., 41, 421, 10.1111/jpg.12715 Espitalie, 1985, Rock-Eval pyrolysis and its applications, Revue De L Institut Francais Du Petrole, 40, 563, 10.2516/ogst:1985035 Fan, 2020, Geological conditions and exploration potential of shale gas reservoir in Wufeng and Longmaxi Formation of southeastern Sichuan Basin, China, J. Pet. Sci. Eng., 191, 10.1016/j.petrol.2020.107138 Ferreiro Mählmann, 2012, Standardisation, calibration and correlation of the Kübler-index and the vitrinite/bituminite reflectance: an inter-laboratory and field related study, Swiss J. Geosci., 105, 153, 10.1007/s00015-012-0110-8 Ferreiro Mählmann, 2016, Vitrinite and vitrinite like solid bitumen reflectance in thermal maturity studies: correlations from diagenesis to incipient metamorphism in different geodynamic settings, Int. J. Coal Geol., 157, 52, 10.1016/j.coal.2015.12.008 Ganz, 1987, Application of infrared spectroscopy to the classification of kerogen-types and the evaluation of source rock and oil shale potentials, Fuel, 66, 708, 10.1016/0016-2361(87)90285-7 Gentzis, 1996, Thermal maturity of lower Paleozoic sedimentary successions in Arctic Canada, AAPG Bull., 80, 1065 Ghanizadeh, 2014, Experimental study of fluid transport processes in the matrix system of the European organic-rich shales: I. Scandinavian Alum Shale, Mar. Pet. Geol., 51, 79, 10.1016/j.marpetgeo.2013.10.013 Goodarzi, 1984, Organic petrography of graptolite fragments from Turkey, Mar. Pet. Geol., 1, 202, 10.1016/0264-8172(84)90146-6 Goodarzi, 1985, Graptolites as indicators of the temperature histories of rocks, J. Geol. Soc. Lond., 142, 1089, 10.1144/gsjgs.142.6.1089 Goodarzi, 1989, Variation of graptolite reflectance with depth of burial, Int. J. Coal Geol., 11, 127, 10.1016/0166-5162(89)90002-5 Guthrie, 1994, Geochemical indicators of depositional environment and source-rock potential for the Upper Ordovician Maquoketa Group, Illinois Basin, AAPG Bull., 78, 744 Hackley, 2022, Vitrinite Reflectance Analysis, Encyclopedia of, Pet. Geosci. Hackley, 2016, Application of organic petrography in north American shale petroleum systems: a review, Int. J. Coal Geol., 163, 8, 10.1016/j.coal.2016.06.010 Hackley, 2018, Understanding and distinguishing reflectance measurements of solid bitumen and vitrinite using hydrous pyrolysis: implications to petroleum assessment, AAPG Bull., 102, 1119, 10.1306/08291717097 Hackley, 2018, Application of Raman spectroscopy as thermal maturity probe in shale petroleum systems: insights from natural and artificial maturation sequences, Energy Fuel, 32, 11190, 10.1021/acs.energyfuels.8b02171 Hackley, 2018, On the petrographic distinction of bituminite from solid bitumen in immature to early mature source rocks, Int. J. Coal Geol., 196, 232, 10.1016/j.coal.2018.06.004 Hackley, 2020, Testing reproducibility of vitrinite and solid bitumen reflectance measurements in North American unconventional source-rock reservoir petroleum systems, Mar. Pet. Geol., 114, 10.1016/j.marpetgeo.2019.104172 Hackley, 2020, Organic petrography of Leonardian (Wolfcamp a) mudrocks and carbonates, Midland Basin, Texas: the fate of oil-prone sedimentary organic matter in the oil window, Mar. Pet. Geol., 112, 10.1016/j.marpetgeo.2019.104086 Hackley, 2022, Evaluating aromatization of solid bitumen generated in the presence and absence of water: Implications for solid bitumen reflectance as a thermal proxy, Int. J. Coal Geol., 258, 10.1016/j.coal.2022.104016 Hao, 2019, Raman spectroscopy of graptolite periderm and its potential as an organic maturity indicator for the Lower Paleozoic in southwestern China, Int. J. Coal Geol., 213, 10.1016/j.coal.2019.103278 Henry, 2019, Raman spectroscopy as a tool to determine the thermal maturity of organic matter: Application to sedimentary, metamorphic and structural geology, Earth Sci. Rev., 198, 10.1016/j.earscirev.2019.102936 Hu, 2020, Development of organic pores in the Longmaxi Formation overmature shales: combined effects of thermal maturity and organic matter composition, Mar. Pet. Geol., 116, 10.1016/j.marpetgeo.2020.104314 ICCP, 1998, The new vitrinite classification (ICCP System 1994), Fuel, 77, 349, 10.1016/S0016-2361(98)80024-0 İnan, 2016, The Silurian Qusaiba Hot Shales of Saudi Arabia: an integrated assessment of thermal maturity, Int. J. Coal Geol., 159, 107, 10.1016/j.coal.2016.04.004 Jubb, 2018, High microscale variability in Raman thermal maturity estimates from shale organic matter, Int. J. Coal Geol., 2018, 1, 10.1016/j.coal.2018.09.017 Katz, 2021, Consideration of the limitations of thermal maturity with respect to vitrinite reflectance, Tmax, and other proxies, AAPG Bull., 105, 695, 10.1306/09242019261 Kelemen, 2001, Maturity trends in Raman spectra from kerogen and coal, Energy Fuel, 15, 653, 10.1021/ef0002039 Khatibi, 2019, Understanding organic matter heterogeneity and maturation rate by Raman spectroscopy, Int. J. Coal Geol., 206, 46, 10.1016/j.coal.2019.03.009 Kibria, 2020, Thermal maturity evaluation using Raman spectroscopy for oil shale samples of USA: comparisons with vitrinite reflectance and pyrolysis methods, Pet. Sci., 17, 567, 10.1007/s12182-020-00443-z Landis, 1995, Maturation and bulk chemical properties of a suite of solid hydrocarbons, Org. Geochem., 22, 137, 10.1016/0146-6380(95)90013-6 Lewan, 1993, Laboratory simulation of petroleum formation: hydrous pyrolysis, 419 Lewan, 1997, Experiments on the role of water in petroleum formation, Geochim. Cosmochim. Acta, 61, 3691, 10.1016/S0016-7037(97)00176-2 Lewan, 1989, Irradiation of organic matter by uranium decay in the Alum Shale, Sweden, Geochim. Cosmochim. Acta, 53, 1307, 10.1016/0016-7037(89)90065-3 Li, 2020, Raman spectroscopy of intruded coals from the Illinois Basin: Correlation with rank and estimated alteration temperature, Int. J. Coal Geol., 219, 10.1016/j.coal.2019.103369 Liang, 2012, Shale lithofacies and reservoir space of the Wufeng–Longmaxi Formation, Sichuan Basin, China, Pet. Explor. Dev., 39, 736, 10.1016/S1876-3804(12)60098-6 Link, 1990, Petrology of graptolites and their utility as indices of thermal maturity in lower Paleozoic strata in northern Yukon, Canada, Int. J. Coal Geol., 15, 113, 10.1016/0166-5162(90)90007-L Lin-Vien, 1991 Lis, 2005, FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance Ro in type-II kerogens from Devonian black shales, Org. Geochem., 36, 1533, 10.1016/j.orggeochem.2005.07.001 Liu, 2013, Sample maturation calculated using Raman spectroscopic parameters for solid organics: methodology and geological applications, Chin. Sci. Bull., 58, 1285, 10.1007/s11434-012-5535-y Liu, 2019, Petrographic and micro-FTIR study of organic matter in the Upper Devonian New Albany Shale during thermal maturation: Implications for kerogen transformation, 165 Liu, 2022, Nature of the Lower–Middle Ordovician reservoir bitumen in the Shunnan area, Tarim Basin, northwestern China, J. Pet. Sci. Eng., 209, 10.1016/j.petrol.2021.109966 Lohr, 2021, Relating Tmax and hydrogen index to vitrinite and solid bitumen reflectance in hydrous pyrolysis residues: Comparisons to natural thermal indices, Int. J. Coal Geol., 242, 10.1016/j.coal.2021.103768 Luo, 2015, Comparative microbial diversity and redox environments of black shale and stromatolite facies in the Mesoproterozoic Xiamaling Formation, Geochim. Cosmochim. Acta, 151, 150, 10.1016/j.gca.2014.12.022 Luo, 2016, Graptolite-derived organic matter in the Wufeng–Longmaxi Formations (Upper Ordovician–Lower Silurian) of southeastern Chongqing, China: Implications for gas shale evaluation, Int. J. Coal Geol., 153, 87, 10.1016/j.coal.2015.11.014 Luo, 2017, The organic petrology of graptolites and maturity assessment of the Wufeng–Longmaxi Formations from Chongqing, China: insights from reflectance cross-plot analysis, Int. J. Coal Geol., 183, 161, 10.1016/j.coal.2017.09.006 Luo, 2018, Optical characteristics of graptolite-bearing sediments and its implication for thermal maturity assessment, Int. J. Coal Geol., 195, 386, 10.1016/j.coal.2018.06.019 Luo, 2020, Graptolites as fossil geo-thermometers and source material of hydrocarbons: an overview of four decades of progress, Earth Sci. Rev., 200, 10.1016/j.earscirev.2019.103000 Lupoi, 2017, Assessment of thermal maturity trends in Devonian–Mississippian source rocks using Raman spectroscopy: limitations of peak-fitting method, Front. Energy Res., 5, 1, 10.3389/fenrg.2017.00024 Lupoi, 2019, Quantitative evaluation of vitrinite reflectance in shale using Raman spectroscopy and multivariate analysis, Fuel, 254, 10.1016/j.fuel.2019.05.156 Lyu, 2022, Characteristics and differences analysis for thermal evolution of Wufeng–Longmaxi shale, southern Sichuan Basin, SW China, Minerals, 12, 906, 10.3390/min12070906 Ma, 2015 Ma, 2018, The progress and prospects of shale gas exploration and development in southern Sichuan Basin, SW China, Pet. Explor. Dev., 45, 172, 10.1016/S1876-3804(18)30018-1 Mastalerz, 2018, Origin, properties, and implications of solid bitumen in source-rock reservoirs: a review, Int. J. Coal Geol., 195, 14, 10.1016/j.coal.2018.05.013 McCartney, 1972, Classification of coals according to degree of coalification by reflectance of the vitrinite component, Fuel, 51, 64, 10.1016/0016-2361(72)90041-5 Meier, 2005, On art and science in curve-fitting vibrational spectra, Vib. Spectrosc., 39, 266, 10.1016/j.vibspec.2005.03.003 Misch, 2019, Solid bitumen in shales: petrographic characteristics and implications for reservoir characterization, Int. J. Coal Geol., 205, 14, 10.1016/j.coal.2019.02.012 Mishra, 2022, Maturation study of vitrinite in carbonaceous shales and coals: Insights from hydrous pyrolysis, Int. J. Coal Geol., 259, 10.1016/j.coal.2022.104044 Morga, 2018, The chemical composition of graptolite periderm in the gas shales from the Baltic Basin of Poland, Int. J. Coal Geol., 199, 10, 10.1016/j.coal.2018.09.016 Morga, 2018, Microstructure of graptolite periderm in Silurian gas shales of Northern Poland, Int. J. Coal Geol., 189, 1, 10.1016/j.coal.2018.02.012 Mumm, 2016, Microscale organic maturity determination of graptolites using Raman spectroscopy, Int. J. Coal Geol., 162, 96, 10.1016/j.coal.2016.05.002 Oliver, 2020 Osterhout, 2022, Deep-UV Raman spectroscopy of carbonaceous Precambrian microfossils: insights into the search for past life on Mars, Astrobiology, 22, 1239, 10.1089/ast.2021.0135 Painter, 1981, Concerning the application of FT-IR to the study of coal: a critical assessment of band assignments and the application of spectral analysis programs, Appl. Spectrosc., 35, 475, 10.1366/0003702814732256 Passey, 2010, From oil-prone source rock to gas-producing shale reservoir: geologic and petrophysical characterization of unconventional shale-gas reservoirs Peters, 1986, Guidelines for evaluating petroleum source rock using programmed pyrolysis, AAPG Bull., 70, 318 Petersen, 2013, Reflectance measurements of zooclasts and solid bitumen in lower Paleozoic shales, southern Scandinavia: correlation to vitrinite reflectance, Int. J. Coal Geol., 114, 1, 10.1016/j.coal.2013.03.013 Reyes, 2018, Organic petrographic analysis of artificially matured chitinozoan- and graptolite-rich Upper Ordovician shale from Hudson Bay Basin, Canada, Int. J. Coal Geol., 199, 138, 10.1016/j.coal.2018.09.019 Riediger, 1989, Graptolites as indicators of regional maturity in lower Paleozoic sediments, Selwyn Basin, Yukon and Northwest Territories, Canada, Can. J. Earth Sci., 26, 2003, 10.1139/e89-169 Robert, 1988 Sanders, 2022, Molecular mechanisms of solid bitumen and vitrinite reflectance suppression explored using hydrous pyrolysis of artificial source rock, Org. Geochem., 165, 10.1016/j.orggeochem.2022.104371 Sanei, 2014, Petrographic and geochemical composition of kerogen in the Furongian (U. Cambrian) Alum Shale, Central Sweden: reflections on the petroleum generation potential, Int. J. Coal Geol., 132, 158, 10.1016/j.coal.2014.08.010 Sauerer, 2017, Fast and accurate shale maturity determination by Raman spectroscopy measurement with minimal sample preparation, Int. J. Coal Geol., 173, 150, 10.1016/j.coal.2017.02.008 Schito, 2017, Assessment of thermal evolution of Paleozoic successions of the Holy Cross Mountains (Poland), Mar. Pet. Geol., 80, 112, 10.1016/j.marpetgeo.2016.11.016 Schito, 2017, Diagenetic thermal evolution of organic matter by Raman spectroscopy, Org. Geochem., 106, 57, 10.1016/j.orggeochem.2016.12.006 Schito, 2022, Towards a kerogen-to-graphite kinetic model by means of Raman spectroscopy, Earth-Sci. Rev., 237 Schito, 2022, Calibrating carbonization temperatures of wood fragments embedded within pyroclastic density currents through Raman spectroscopy, Minerals, 12, 203, 10.3390/min12020203 Song, 2023, Thermal evolution of graptolite and solid bitumen properties at high maturity under natural and artificial conditions: U.S, Geol. Surv. Data Rel. Spencer, 2022, Composition of continental crust altered by the emergence of land plants, Nat. Geosci., 15, 735, 10.1038/s41561-022-00995-2 Stockhausen, 2020, The Expulsinator versus conventional pyrolysis: the differences of oil/gas generation and expulsion simulation under near-natural conditions, Mar. Pet. Geol., 117, 10.1016/j.marpetgeo.2020.104412 Stokes, 2022, Relating systematic compositional variability to the textural occurrence of solid bitumen in shales, Int. J. Coal Geol., 261, 10.1016/j.coal.2022.104068 Su, 2008, SHRIMP U–Pb ages of K-bentonite beds in the Xiamaling Formation: implications for revised subdivision of the Meso- to Neoproterozoic history of the North China Craton, Gondwana Res., 14, 543, 10.1016/j.gr.2008.04.007 Suárez-Ruiz, 2012, Review and update of the applications of organic petrology: part 1, geological applications, Int. J. Coal Geol., 99, 54, 10.1016/j.coal.2012.02.004 Suchý, 2002, Dispersed organic matter from Silurian shales of the Barrandian Basin, Czech Republic: optical properties, chemical composition and thermal maturity, Int. J. Coal Geol., 53, 1, 10.1016/S0166-5162(02)00137-4 Suchý, 2004, Contact metamorphism of Silurian black shales by a basalt sill: geological evidence and thermal modeling in the Barrandian Basin, Bull. Geosci., 79, 133 Sundararaman, 1993, Depositional environment, thermal maturity and irradiation effects on porphyrin distribution: Alum Shale, Sweden, Org. Geochem., 20, 333, 10.1016/0146-6380(93)90123-S Taylor, 1998 Teng, 2022, Origin of organic matter and organic pores in the overmature Ordovician-Silurian Wufeng-Longmaxi Shale of the Sichuan Basin, China, Int. J. Coal Geol., 253, 10.1016/j.coal.2022.103970 U.S. Energy Information Administration, 2022 Valentine, 2021, Hydrous pyrolysis of New Albany Shale: a study examining maturation changes and porosity development, Mar. Pet. Geol., 134, 10.1016/j.marpetgeo.2021.105368 Wang, 2019, Integrated assessment of thermal maturity of the Upper Ordovician–Lower Silurian Wufeng–Longmaxi shale in Sichuan Basin, China, Mar. Pet. Geol., 100, 447, 10.1016/j.marpetgeo.2018.10.025 Wang, 2020, Nanoscale pore network evolution of Xiamaling marine shale during organic matter maturation by hydrous pyrolysis, Energy Fuel, 34, 1548, 10.1021/acs.energyfuels.9b03686 Wilkins, 2015, A RaMM study of thermal maturity of dispersed organic matter in marine source rocks, Int. J. Coal Geol., 150-151, 252, 10.1016/j.coal.2015.09.007 Wu, 2022, Geochemistry and depositional environment of the Mesoproterozoic Xiamaling shales, northern North China, J. Pet. Sci. Eng., 215, 10.1016/j.petrol.2022.110730 Xiao, 2022, Organic molecular evidence in the ∼1.40 Ga Xiamaling Formation black shales in North China Craton for biological diversity and paleoenvironment of mid-Proterozoic ocean, Precambrian Res., 381, 10.1016/j.precamres.2022.106848 Yang, 2016, Application of bitumen and graptolite reflectance in the Silurian Longmaxi shale, southeastern Sichuan Basin, Pet. Geol. Exp., 38, 466 Yang, 1993, Diagenesis and anchimetamorphism in an overthrust belt, external domain of the Taconian Orogen, southern Canadian Appalachians--ll. Paleogeothermal gradients derived from maturation of different types of organic matter, Org. Geochem., 20, 381, 10.1016/0146-6380(93)90127-W Yang, 2016, Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry, Mar. Pet. Geol., 70, 27, 10.1016/j.marpetgeo.2015.11.019 Zheng, 2021, Role of zooclasts in the kerogen type and hydrocarbon potential of the lower Paleozoic Alum Shale, Int. J. Coal Geol., 248, 10.1016/j.coal.2021.103865 Zheng, 2022, Graptolite reflectance anomaly, Int. J. Coal Geol., 261, 10.1016/j.coal.2022.104072 Zhou, 2014, The relationship between micro-Raman spectral parameters and reflectance of solid bitumen, Int. J. Coal Geol., 121, 19, 10.1016/j.coal.2013.10.013