Thermal energy storage for low and medium temperature applications using phase change materials – A review
Tóm tắt
Từ khóa
Tài liệu tham khảo
International Energy Agency. World energy outlook 2013; 2015.
Harris K, Annut A, MacLeay I. Digest of United Kingdom energy statistics, 2015, https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/450302/DUKES_2015.pdf.
Hawkes, 2014, Long-run marginal CO2 emissions factors in national electricity systems, Appl Energy, 125, 197, 10.1016/j.apenergy.2014.03.060
Hawkes, 2010, Estimating marginal CO2 emissions rates for national electricity systems, Energy Pol., 38, 5977, 10.1016/j.enpol.2010.05.053
National grid. UK future energy scenarios 2014. Energy, no. July; 2014. p. 220.
Haillot, 2013, Optimization of solar DHW system including PCM media, Appl Energy, 109, 470, 10.1016/j.apenergy.2012.09.062
Ibáñez, 2006, Modelization of a water tank including a PCM module, Appl Therm Eng, 26, 1328, 10.1016/j.applthermaleng.2005.10.022
Zondag, 2013, Prototype thermochemical heat storage with open reactor system, Appl Energy, 109, 360, 10.1016/j.apenergy.2013.01.082
Agyenim, 2010, A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS), Renew Sustain Energy Rev, 14, 615, 10.1016/j.rser.2009.10.015
Gil, 2013, Material selection and testing for thermal energy storage in solar cooling, Renew Energy, 57, 366, 10.1016/j.renene.2013.02.008
Gil, 2013, Thermal behaviour of d-mannitol when used as PCM: comparison of results obtained by DSC and in a thermal energy storage unit at pilot plant scale, Appl Energy, 111, 1107, 10.1016/j.apenergy.2013.04.081
Colella, 2012, Numerical analysis of a medium scale latent energy storage unit for district heating systems, Energy, 45, 397, 10.1016/j.energy.2012.03.043
Kensby, 2015, Potential of residential buildings as thermal energy storage in district heating systems – results from a pilot test, Appl Energy, 137, 773, 10.1016/j.apenergy.2014.07.026
Vivian, 2015, A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources, Appl Energy, 156, 727, 10.1016/j.apenergy.2015.07.005
Higgo, 2015, Characterization of a compact organic rankine cycle prototype for low-grade transient solar energy conversion, Energy Proc, 69, 1113, 10.1016/j.egypro.2015.03.223
Kalogirou, 2003, The potential of solar industrial process heat applications, Appl Energy, 76, 337, 10.1016/S0306-2619(02)00176-9
Jegadheeswaran, 2009, Performance enhancement in latent heat thermal storage system: a review, Renew Sustain Energy Rev, 13, 2225, 10.1016/j.rser.2009.06.024
Nakaso, 2008, Extension of heat transfer area using carbon fiber cloths in latent heat thermal energy storage tanks, Chem Eng Process Process Intensif, 47, 879, 10.1016/j.cep.2007.02.001
Qi, 2014, Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide, Sol Energy Mater Sol Cells, 123, 171, 10.1016/j.solmat.2014.01.024
Wang, 2009, Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage, Appl Energy, 86, 1479, 10.1016/j.apenergy.2008.12.004
Huang, 2011, Microencapsulated phase change slurries for thermal energy storage in a residential solar energy system, Renew Energy, 36, 2932, 10.1016/j.renene.2011.04.004
Wang, 2014, A combined experimental and simulation study on charging process of Erythritol–HTO direct-blending based energy storage system, Energy Convers Manage, 83, 306, 10.1016/j.enconman.2014.03.054
Guo, 2015, Experimental study on solving the blocking for the direct contact mobilized thermal energy storage container, Appl Therm Eng, 78, 556, 10.1016/j.applthermaleng.2014.12.008
Johansson, 2000
Raemy, 1983, Thermal behaviour of carbohydrates studied by heat flow calorimetry, J Therm Anal, 28, 95, 10.1007/BF02105282
Schiweck, 2012, Sugar alcohols, 2
Cornils, 2008, Dicarboxylic acids aliphatic
Kerridge, 1988, The chemistry of molten acetamide and acetamide complexes, Chem Soc Rev, 17, 181, 10.1039/cs9881700181
Kenisarin, 2014, Thermophysical properties of some organic phase change materials for latent heat storage. A review, Sol Energy, 107, 553, 10.1016/j.solener.2014.05.001
Mavrovic, 2010, vol. 2, 1
Haillot, 2011, Thermal analysis of phase change materials in the temperature range 120–150°C, Thermochim Acta, 513, 49, 10.1016/j.tca.2010.11.011
Jankowski, 2014, A review of phase change materials for vehicle component thermal buffering, Appl Energy, 113, 1525, 10.1016/j.apenergy.2013.08.026
Miller, 1941, Lange’s handbook of chemistry, Am J Pub Heal Nations Heal, 31, 1324, 10.2105/AJPH.31.12.1324-a
Harish, 2015, Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets, Appl Therm Eng, 80, 205, 10.1016/j.applthermaleng.2015.01.056
Yuan, 2014, Fatty acids as phase change materials: a review, Renew Sustain Energy Rev, 29, 482, 10.1016/j.rser.2013.08.107
Tang, 2014, Preparation and thermal properties of stearic acid/titanium dioxide composites as shape-stabilized phase change materials for building thermal energy storage, Energy Build, 80, 352, 10.1016/j.enbuild.2014.05.030
Farid, 2004, A review on phase change energy storage: materials and applications, Energy Convers Manage, 45, 1597, 10.1016/j.enconman.2003.09.015
Silakhori, 2015, Preparation and thermal properties of form-stable phase change materials composed of palmitic acid/polypyrrole/graphene nanoplatelets, Energy Build, 99, 189, 10.1016/j.enbuild.2015.04.042
Website of Rubitherm GmbH. Rubitherm GmbH; 2016. <http://www.rubitherm.eu/>.
Riemensschneider, 2012, Oxalic acid, 543
Tong, 2009, Thermodynamic investigation of several natural polyols (III): heat capacities and thermodynamic properties of erythritol, J Therm Anal Calorim, 95, 469, 10.1007/s10973-008-9268-8
Pielichowska, 2014, Phase change materials for thermal energy storage, Prog Mater Sci, 65, 67, 10.1016/j.pmatsci.2014.03.005
Lorz, 2012, Phthalic acid and derivates, 35
Muraishi, 1994, The thermal behaviour of dicarboxylic acids in various atmospheres, Thermochim Acta, 232, 195, 10.1016/0040-6031(94)80059-6
Lohbeck, 2005, Maleic and fumaric acids, 413
Felthouse, 1933, Maleic anhydride, maleic acid, and fumaric acid
Maki, 2012, Benzoic acid and derivatives, vol. 60, 329
Hasl, 2014, The prediction of heat storage properties by the study of structural effect on organic phase change materials, Energy Proc, 46, 301, 10.1016/j.egypro.2014.01.186
Barone, 1990, Enthalpies and entropies of sublimation, vaporization and fusion of nine polyhydric alcohols, J Chem Soc Faraday Trans, 86, 75, 10.1039/ft9908600075
Solé, 2014, Stability of sugar alcohols as PCM for thermal energy storage, Sol Energy Mater Sol Cells, 126, 125, 10.1016/j.solmat.2014.03.020
Krishna Bama, 2009, On the thermal properties of aqueous solution of D-mannitol, Nondestruct Test Eval, 25, 67, 10.1080/10589750902994407
Gil, 2014, Experimental analysis of hydroquinone used as phase change material (PCM) to be applied in solar cooling refrigeration, Int J Refrig, 39, 95, 10.1016/j.ijrefrig.2013.05.013
Lane, 1992, Phase change materials for energy storage nucleation to prevent supercooling, Sol Energy Mater Sol Cells, 27, 135, 10.1016/0927-0248(92)90116-7
Habashy, 1972, Thermal decomposition of the hydrates of barium hydroxide, J Inorg Nucl Chem, 34, 57, 10.1016/0022-1902(72)80361-0
Porisini, 1988, Salt hydrates used for latent heat storage: corrosion of metals and reliability of thermal performance, Sol Energy, 41, 193, 10.1016/0038-092X(88)90136-3
Acree, 1991, Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochim Acta, 189, 37, 10.1016/0040-6031(91)87098-H
Zalba, 2003, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl Therm Eng, 23, 251, 10.1016/S1359-4311(02)00192-8
Hadjieva, 2000, Composite salt-hydrate concrete system for building energy storage, Renew Energy, 19, 111, 10.1016/S0960-1481(99)00024-5
Sandnes, 2006, Supercooling salt hydrates: stored enthalpy as a function of temperature, Sol Energy, 80, 616, 10.1016/j.solener.2004.11.014
Johansen, 2015, Thermal conductivity enhancement of sodium acetate trihydrate by adding graphite powder and the effect on stability of supercooling, Energy Proc, 70, 249, 10.1016/j.egypro.2015.02.121
Patnaik, 2003
Zhongliang L, Chongfang M, Jing L. An experimental study on the stability and reliability of the thermal properties of barium hydroxide octahydrate as a phase change material. In: Proc 7th expert meet work IEA annex 17 Adv Therm Energy Storage through Phase Chang Mater Chem React – Feasibility Stud Demonstr Proj; 2004. p. 63–9.
Pilar, 2012, Study of magnesium chloride hexahydrate as heat storage material, Thermochim Acta, 546, 81, 10.1016/j.tca.2012.07.021
Bauer, 2011, Recent progress in alkali nitrate/nitrite developments for solar thermal power applications, Molten Salts Chem Technol, 1
Gomez, 2013, Ca(NO3)2–NaNO3–KNO3 molten salt mixtures for direct thermal energy storage systems in parabolic trough plants, J Sol Energy Eng, 135, 021016, 10.1115/1.4023182
Cordaro, 2011, Multicomponent molten salt mixtures based on nitrate/nitrite anions, J Sol Energy Eng, 133, 011014, 10.1115/1.4003418
Yamada, 1993, Melting point and supercooling characteristics of molten salt, Thermochim Acta, 218, 401, 10.1016/0040-6031(93)80439-H
Rowlinson, 1970, Molecular thermodynamics of fluid-phase equilibria, J Chem Thermodyn, 2, 158, 10.1016/0021-9614(70)90078-9
Yanping, 2011, Theoretic prediction of melting temperature and latent heat for a fatty acid eutectic mixture, J Chem Eng Data, 56, 2889, 10.1021/je200057j
Gmehling, 1993, A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties, Ind Eng Chem Res, 32, 178, 10.1021/ie00013a024
Diarce, 2015, Eutectic mixtures of sugar alcohols for thermal energy storage in the 50–90°C temperature range, Sol Energy Mater Sol Cells, 134, 215, 10.1016/j.solmat.2014.11.050
Sharma, 2009, Review on thermal energy storage with phase change materials and applications, Renew Sustain Energy Rev, 13, 318, 10.1016/j.rser.2007.10.005
Baran, 2003, Phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as PCM in a latent heat storage system, Energy Convers Manage, 44, 3227, 10.1016/S0196-8904(03)00104-3
Olivares, 2013, LiNO3–NaNO3–KNO3 salt for thermal energy storage: thermal stability evaluation in different atmospheres, Thermochim Acta, 560, 34, 10.1016/j.tca.2013.02.029
Roget, 2013, Study of the KNO3–LiNO3 and KNO3–NaNO3–LiNO3 eutectics as phase change materials for thermal storage in a low-temperature solar power plant, Sol Energy, 95, 155, 10.1016/j.solener.2013.06.008
Gamataeva, 2014, Differentiation of the Li, Na, K‖NO2, NO3 quaternary reciprocal system and phase formation in its stable partitioning tetrahedron LiNO2–NaNO2–KNO2–KNO3, Russ J Inorg Chem, 59, 134, 10.1134/S0036023613120103
Janz GJ, Tomkins RPT. Molten salts: volume 5, Part 2. Additional single and multi-component salt systems. Electrical conductance, density, viscosity and surface tension data. New York; 1983.
Gasanaliev, 2007, Heat-accumulating properties of melts, Russ Chem Rev, 69, 179, 10.1070/RC2000v069n02ABEH000490
Dante, 1970, Molten mixtures of K, Na formates with alkali halides. Note I, Zeitschrift für Naturforschung A, 25, 52, 10.1515/zna-1970-0110
Kenisarin, 2010, High-temperature phase change materials for thermal energy storage, Renew Sustain Energy Rev, 14, 955, 10.1016/j.rser.2009.11.011
Janz GJ, Tomkins RPT. Molten salts: volume 5, part 1 additional single and multi-component salt systems. Electrical conductance, density, viscosity and surface tension data. New York; 1980.
Hewitt, 2012, Heat pumps and energy storage – the challenges of implementation, Appl Energy, 89, 37, 10.1016/j.apenergy.2010.12.028
Agyenim, 2011, Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system, Renew Energy, 36, 108, 10.1016/j.renene.2010.06.005
Trp, 2005, An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit, Sol Energy, 79, 648, 10.1016/j.solener.2005.03.006
Barba, 2003, Discharge mode for encapsulated PCMs in storage tanks, Sol Energy, 74, 141, 10.1016/S0038-092X(03)00117-8
Deckert, 2014, Economic efficiency of mobile latent heat storages, Energy Proc, 46, 171, 10.1016/j.egypro.2014.01.170
a Hawlader, 2001, Encapsulated phase change materials for thermal energy storage: experiments and simulation, Int J Energy Res, 26, 159
Cabeza, 2006, Experimentation with a water tank including a PCM module, Sol Energy Mater Sol Cells, 90, 1273, 10.1016/j.solmat.2005.08.002
Wu, 2014, Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules, Appl Energy, 121, 184, 10.1016/j.apenergy.2014.01.085
Regin, 2009, An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: numerical investigation, Renew Energy, 34, 1765, 10.1016/j.renene.2008.12.012
Mosaffa, 2014, Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications, Renew Energy, 68, 452, 10.1016/j.renene.2014.02.025
Jiao, 2015, Simulation and feasibility analysis of PCM based passive cooling technique in residential house, Proc Eng, 121, 1969, 10.1016/j.proeng.2015.09.189
Reyes, 2015, Experimental analysis, modeling and simulation of a solar energy accumulator with paraffin wax as PCM, Energy Convers Manage, 105, 189, 10.1016/j.enconman.2015.07.068
Shon, 2014, Improved heat storage rate for an automobile coolant waste heat recovery system using phase-change material in a fin–tube heat exchanger, Appl Energy, 113, 680, 10.1016/j.apenergy.2013.07.049
Sciacovelli, 2015, Maximization of performance of a PCM latent heat storage system with innovative fins, Appl Energy, 137, 707, 10.1016/j.apenergy.2014.07.015