Thermal energy storage for low and medium temperature applications using phase change materials – A review

Applied Energy - Tập 177 - Trang 227-238 - 2016
José Maria Cunha1, Philip Eames1
1Centre for Renewable Energy Systems Technology (CREST), Loughborough University, Loughborough (Leicestershire) LE11 3TU, United Kingdom

Tóm tắt

Từ khóa


Tài liệu tham khảo

International Energy Agency. World energy outlook 2013; 2015.

Harris K, Annut A, MacLeay I. Digest of United Kingdom energy statistics, 2015, https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/450302/DUKES_2015.pdf.

Hawkes, 2014, Long-run marginal CO2 emissions factors in national electricity systems, Appl Energy, 125, 197, 10.1016/j.apenergy.2014.03.060

Hawkes, 2010, Estimating marginal CO2 emissions rates for national electricity systems, Energy Pol., 38, 5977, 10.1016/j.enpol.2010.05.053

National grid. UK future energy scenarios 2014. Energy, no. July; 2014. p. 220.

Haillot, 2013, Optimization of solar DHW system including PCM media, Appl Energy, 109, 470, 10.1016/j.apenergy.2012.09.062

Ibáñez, 2006, Modelization of a water tank including a PCM module, Appl Therm Eng, 26, 1328, 10.1016/j.applthermaleng.2005.10.022

Zondag, 2013, Prototype thermochemical heat storage with open reactor system, Appl Energy, 109, 360, 10.1016/j.apenergy.2013.01.082

Agyenim, 2010, A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS), Renew Sustain Energy Rev, 14, 615, 10.1016/j.rser.2009.10.015

Gil, 2013, Material selection and testing for thermal energy storage in solar cooling, Renew Energy, 57, 366, 10.1016/j.renene.2013.02.008

Gil, 2013, Thermal behaviour of d-mannitol when used as PCM: comparison of results obtained by DSC and in a thermal energy storage unit at pilot plant scale, Appl Energy, 111, 1107, 10.1016/j.apenergy.2013.04.081

Colella, 2012, Numerical analysis of a medium scale latent energy storage unit for district heating systems, Energy, 45, 397, 10.1016/j.energy.2012.03.043

Kensby, 2015, Potential of residential buildings as thermal energy storage in district heating systems – results from a pilot test, Appl Energy, 137, 773, 10.1016/j.apenergy.2014.07.026

Vivian, 2015, A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources, Appl Energy, 156, 727, 10.1016/j.apenergy.2015.07.005

Higgo, 2015, Characterization of a compact organic rankine cycle prototype for low-grade transient solar energy conversion, Energy Proc, 69, 1113, 10.1016/j.egypro.2015.03.223

Kalogirou, 2003, The potential of solar industrial process heat applications, Appl Energy, 76, 337, 10.1016/S0306-2619(02)00176-9

Jegadheeswaran, 2009, Performance enhancement in latent heat thermal storage system: a review, Renew Sustain Energy Rev, 13, 2225, 10.1016/j.rser.2009.06.024

Nakaso, 2008, Extension of heat transfer area using carbon fiber cloths in latent heat thermal energy storage tanks, Chem Eng Process Process Intensif, 47, 879, 10.1016/j.cep.2007.02.001

Qi, 2014, Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide, Sol Energy Mater Sol Cells, 123, 171, 10.1016/j.solmat.2014.01.024

Wang, 2009, Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage, Appl Energy, 86, 1479, 10.1016/j.apenergy.2008.12.004

Huang, 2011, Microencapsulated phase change slurries for thermal energy storage in a residential solar energy system, Renew Energy, 36, 2932, 10.1016/j.renene.2011.04.004

Wang, 2014, A combined experimental and simulation study on charging process of Erythritol–HTO direct-blending based energy storage system, Energy Convers Manage, 83, 306, 10.1016/j.enconman.2014.03.054

Guo, 2015, Experimental study on solving the blocking for the direct contact mobilized thermal energy storage container, Appl Therm Eng, 78, 556, 10.1016/j.applthermaleng.2014.12.008

Johansson, 2000

Raemy, 1983, Thermal behaviour of carbohydrates studied by heat flow calorimetry, J Therm Anal, 28, 95, 10.1007/BF02105282

Schiweck, 2012, Sugar alcohols, 2

Cornils, 2008, Dicarboxylic acids aliphatic

Kerridge, 1988, The chemistry of molten acetamide and acetamide complexes, Chem Soc Rev, 17, 181, 10.1039/cs9881700181

Kenisarin, 2014, Thermophysical properties of some organic phase change materials for latent heat storage. A review, Sol Energy, 107, 553, 10.1016/j.solener.2014.05.001

Mavrovic, 2010, vol. 2, 1

Haillot, 2011, Thermal analysis of phase change materials in the temperature range 120–150°C, Thermochim Acta, 513, 49, 10.1016/j.tca.2010.11.011

Jankowski, 2014, A review of phase change materials for vehicle component thermal buffering, Appl Energy, 113, 1525, 10.1016/j.apenergy.2013.08.026

Miller, 1941, Lange’s handbook of chemistry, Am J Pub Heal Nations Heal, 31, 1324, 10.2105/AJPH.31.12.1324-a

Harish, 2015, Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets, Appl Therm Eng, 80, 205, 10.1016/j.applthermaleng.2015.01.056

Yuan, 2014, Fatty acids as phase change materials: a review, Renew Sustain Energy Rev, 29, 482, 10.1016/j.rser.2013.08.107

Tang, 2014, Preparation and thermal properties of stearic acid/titanium dioxide composites as shape-stabilized phase change materials for building thermal energy storage, Energy Build, 80, 352, 10.1016/j.enbuild.2014.05.030

Farid, 2004, A review on phase change energy storage: materials and applications, Energy Convers Manage, 45, 1597, 10.1016/j.enconman.2003.09.015

Silakhori, 2015, Preparation and thermal properties of form-stable phase change materials composed of palmitic acid/polypyrrole/graphene nanoplatelets, Energy Build, 99, 189, 10.1016/j.enbuild.2015.04.042

Website of Rubitherm GmbH. Rubitherm GmbH; 2016. <http://www.rubitherm.eu/>.

Dunn, 1984, The supercooling of acetamide, Thermochim Acta, 80, 343, 10.1016/0040-6031(84)87213-5

Riemensschneider, 2012, Oxalic acid, 543

Tong, 2009, Thermodynamic investigation of several natural polyols (III): heat capacities and thermodynamic properties of erythritol, J Therm Anal Calorim, 95, 469, 10.1007/s10973-008-9268-8

Pielichowska, 2014, Phase change materials for thermal energy storage, Prog Mater Sci, 65, 67, 10.1016/j.pmatsci.2014.03.005

Lorz, 2012, Phthalic acid and derivates, 35

Muraishi, 1994, The thermal behaviour of dicarboxylic acids in various atmospheres, Thermochim Acta, 232, 195, 10.1016/0040-6031(94)80059-6

Lohbeck, 2005, Maleic and fumaric acids, 413

Felthouse, 1933, Maleic anhydride, maleic acid, and fumaric acid

Maki, 2012, Benzoic acid and derivatives, vol. 60, 329

Hasl, 2014, The prediction of heat storage properties by the study of structural effect on organic phase change materials, Energy Proc, 46, 301, 10.1016/j.egypro.2014.01.186

Barone, 1990, Enthalpies and entropies of sublimation, vaporization and fusion of nine polyhydric alcohols, J Chem Soc Faraday Trans, 86, 75, 10.1039/ft9908600075

Solé, 2014, Stability of sugar alcohols as PCM for thermal energy storage, Sol Energy Mater Sol Cells, 126, 125, 10.1016/j.solmat.2014.03.020

Krishna Bama, 2009, On the thermal properties of aqueous solution of D-mannitol, Nondestruct Test Eval, 25, 67, 10.1080/10589750902994407

Gil, 2014, Experimental analysis of hydroquinone used as phase change material (PCM) to be applied in solar cooling refrigeration, Int J Refrig, 39, 95, 10.1016/j.ijrefrig.2013.05.013

Lane, 1992, Phase change materials for energy storage nucleation to prevent supercooling, Sol Energy Mater Sol Cells, 27, 135, 10.1016/0927-0248(92)90116-7

Habashy, 1972, Thermal decomposition of the hydrates of barium hydroxide, J Inorg Nucl Chem, 34, 57, 10.1016/0022-1902(72)80361-0

Porisini, 1988, Salt hydrates used for latent heat storage: corrosion of metals and reliability of thermal performance, Sol Energy, 41, 193, 10.1016/0038-092X(88)90136-3

Acree, 1991, Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochim Acta, 189, 37, 10.1016/0040-6031(91)87098-H

Zalba, 2003, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Appl Therm Eng, 23, 251, 10.1016/S1359-4311(02)00192-8

Hadjieva, 2000, Composite salt-hydrate concrete system for building energy storage, Renew Energy, 19, 111, 10.1016/S0960-1481(99)00024-5

Sandnes, 2006, Supercooling salt hydrates: stored enthalpy as a function of temperature, Sol Energy, 80, 616, 10.1016/j.solener.2004.11.014

Johansen, 2015, Thermal conductivity enhancement of sodium acetate trihydrate by adding graphite powder and the effect on stability of supercooling, Energy Proc, 70, 249, 10.1016/j.egypro.2015.02.121

Patnaik, 2003

Zhongliang L, Chongfang M, Jing L. An experimental study on the stability and reliability of the thermal properties of barium hydroxide octahydrate as a phase change material. In: Proc 7th expert meet work IEA annex 17 Adv Therm Energy Storage through Phase Chang Mater Chem React – Feasibility Stud Demonstr Proj; 2004. p. 63–9.

Pilar, 2012, Study of magnesium chloride hexahydrate as heat storage material, Thermochim Acta, 546, 81, 10.1016/j.tca.2012.07.021

Bauer, 2011, Recent progress in alkali nitrate/nitrite developments for solar thermal power applications, Molten Salts Chem Technol, 1

Gomez, 2013, Ca(NO3)2–NaNO3–KNO3 molten salt mixtures for direct thermal energy storage systems in parabolic trough plants, J Sol Energy Eng, 135, 021016, 10.1115/1.4023182

Cordaro, 2011, Multicomponent molten salt mixtures based on nitrate/nitrite anions, J Sol Energy Eng, 133, 011014, 10.1115/1.4003418

Yamada, 1993, Melting point and supercooling characteristics of molten salt, Thermochim Acta, 218, 401, 10.1016/0040-6031(93)80439-H

Rowlinson, 1970, Molecular thermodynamics of fluid-phase equilibria, J Chem Thermodyn, 2, 158, 10.1016/0021-9614(70)90078-9

Yanping, 2011, Theoretic prediction of melting temperature and latent heat for a fatty acid eutectic mixture, J Chem Eng Data, 56, 2889, 10.1021/je200057j

Gmehling, 1993, A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties, Ind Eng Chem Res, 32, 178, 10.1021/ie00013a024

Diarce, 2015, Eutectic mixtures of sugar alcohols for thermal energy storage in the 50–90°C temperature range, Sol Energy Mater Sol Cells, 134, 215, 10.1016/j.solmat.2014.11.050

Sharma, 2009, Review on thermal energy storage with phase change materials and applications, Renew Sustain Energy Rev, 13, 318, 10.1016/j.rser.2007.10.005

Baran, 2003, Phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as PCM in a latent heat storage system, Energy Convers Manage, 44, 3227, 10.1016/S0196-8904(03)00104-3

Olivares, 2013, LiNO3–NaNO3–KNO3 salt for thermal energy storage: thermal stability evaluation in different atmospheres, Thermochim Acta, 560, 34, 10.1016/j.tca.2013.02.029

Roget, 2013, Study of the KNO3–LiNO3 and KNO3–NaNO3–LiNO3 eutectics as phase change materials for thermal storage in a low-temperature solar power plant, Sol Energy, 95, 155, 10.1016/j.solener.2013.06.008

Gamataeva, 2014, Differentiation of the Li, Na, K‖NO2, NO3 quaternary reciprocal system and phase formation in its stable partitioning tetrahedron LiNO2–NaNO2–KNO2–KNO3, Russ J Inorg Chem, 59, 134, 10.1134/S0036023613120103

Janz GJ, Tomkins RPT. Molten salts: volume 5, Part 2. Additional single and multi-component salt systems. Electrical conductance, density, viscosity and surface tension data. New York; 1983.

Gasanaliev, 2007, Heat-accumulating properties of melts, Russ Chem Rev, 69, 179, 10.1070/RC2000v069n02ABEH000490

Dante, 1970, Molten mixtures of K, Na formates with alkali halides. Note I, Zeitschrift für Naturforschung A, 25, 52, 10.1515/zna-1970-0110

Kenisarin, 2010, High-temperature phase change materials for thermal energy storage, Renew Sustain Energy Rev, 14, 955, 10.1016/j.rser.2009.11.011

Janz GJ, Tomkins RPT. Molten salts: volume 5, part 1 additional single and multi-component salt systems. Electrical conductance, density, viscosity and surface tension data. New York; 1980.

Hewitt, 2012, Heat pumps and energy storage – the challenges of implementation, Appl Energy, 89, 37, 10.1016/j.apenergy.2010.12.028

Agyenim, 2011, Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system, Renew Energy, 36, 108, 10.1016/j.renene.2010.06.005

Trp, 2005, An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit, Sol Energy, 79, 648, 10.1016/j.solener.2005.03.006

Barba, 2003, Discharge mode for encapsulated PCMs in storage tanks, Sol Energy, 74, 141, 10.1016/S0038-092X(03)00117-8

Deckert, 2014, Economic efficiency of mobile latent heat storages, Energy Proc, 46, 171, 10.1016/j.egypro.2014.01.170

a Hawlader, 2001, Encapsulated phase change materials for thermal energy storage: experiments and simulation, Int J Energy Res, 26, 159

Cabeza, 2006, Experimentation with a water tank including a PCM module, Sol Energy Mater Sol Cells, 90, 1273, 10.1016/j.solmat.2005.08.002

Wu, 2014, Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules, Appl Energy, 121, 184, 10.1016/j.apenergy.2014.01.085

Regin, 2009, An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: numerical investigation, Renew Energy, 34, 1765, 10.1016/j.renene.2008.12.012

Mosaffa, 2014, Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications, Renew Energy, 68, 452, 10.1016/j.renene.2014.02.025

Jiao, 2015, Simulation and feasibility analysis of PCM based passive cooling technique in residential house, Proc Eng, 121, 1969, 10.1016/j.proeng.2015.09.189

Reyes, 2015, Experimental analysis, modeling and simulation of a solar energy accumulator with paraffin wax as PCM, Energy Convers Manage, 105, 189, 10.1016/j.enconman.2015.07.068

Shon, 2014, Improved heat storage rate for an automobile coolant waste heat recovery system using phase-change material in a fin–tube heat exchanger, Appl Energy, 113, 680, 10.1016/j.apenergy.2013.07.049

Sciacovelli, 2015, Maximization of performance of a PCM latent heat storage system with innovative fins, Appl Energy, 137, 707, 10.1016/j.apenergy.2014.07.015

Merlin, 2016, Heat transfer enhancement in latent heat thermal storage systems: comparative study of different solutions and thermal contact investigation between the exchanger and the PCM, Appl Energy, 166, 107, 10.1016/j.apenergy.2016.01.012