Thermal conductivity of cast iron -A review

China Foundry - Tập 17 Số 2 - Trang 85-95 - 2020
Guanghua Wang1, Yanxiang Li2,1
1School of Materials Science and Engineering, Tsinghua University, Beijing, China
2Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Census of world casting production: 2004-2017, Modern Casting. http://www.thewfo.com/census/ [17/7/2019].

Ma Z J, Tao D, Yang Z, et al. The effect of vermicularity on the thermal conductivity of vermicular graphite cast iron. Materials & Design, 2016, 93: 418–422.

Pevec M, Oder G, Potrč I, et al. Elevated temperature low cycle fatigue of grey cast iron used for automotive brake discs. Engineering Failure Analysis, 2014, 42: 221–230.

Bagnoli F, Dolce F, Bernabei M, et al. Thermal fatigue cracks of fire fighting vehicles gray iron brake discs. Engineering Failure Analysis, 2009, 16(1): 152–163.

Lan P, Zhang J Q. Strength, microstructure and chemistry of ingot mould grey iron after different cycles of low frequency high temperature loads. Materials & Design, 2014, 54(1): 112–120.

Witik R A, Payet J, Michaud V, et al. Assessing the life cycle costs and environmental performance of lightweight materials in automobile applications. Composites, Part A: Applied Science and Manufacturing, 2011, 42(11): 1694–1709.

Li Y X, Liu B C, Loper Jr C R. Study of the solid/liquid interface during unidirectional solidification of cast iron. Transactions of the American Foundrymen’s Society, 1990, 98: 483–488.

Holmgren D. Review of thermal conductivity of cast iron. International Journal of Cast Metals Research, 2005, 18(6): 331–345.

Chen G. Nanoscale energy transport and conversion. MIT Pappalardo Series in Mechanical Engineering, Oxford University Press, 2005.

Wang G H, Li Y X. Effects of alloying elements and temperature on thermal conductivity of ferrite. Journal of Applied Physics, 2019, 126(12): 125118.

Tritt T M. Thermal conductivity: theory, properties, and applications. Springer Science & Business Media, 2005.

Holmgren D, Diszegi A, Svensson I L, et al. Effects of nodularity on thermal conductivity of cast iron. International Journal of Cast Metals Research, 2007, 20(1): 30–40.

Holmgren D, Selin M. Regression model describing the thermal conductivity of various cast irons. Materials Science Forum, 2010, 649: 499–504.

Selin M, Konig M. Regression analysis of thermal conductivity based on measurements of compacted graphite irons. Metallurgical and Materials Transactions A -Physical Metallurgy and Materials Science, 2009, 40A: 3235–3244.

Jalava K, Soivio K, Laine J, et al. Effect of silicon and microstructure on spheroidal graphite cast iron thermal conductivity at elevated temperatures. International Journal of Metalcasting, 2017, 7: 1–7.

Wang G Q, Chen X, Li Y X. Fuzzy neural network analysis on the gray cast iron with high thermal conductivity and tensile strength. China Foundry, 2019, 16(3): 190–197.

Helsing J, Helte A. Effective conductivity of aggregates of anisotropic grains. Journal of Applied Physics, 1991, 69(6): 3583–3588.

Helsing J, Grimvall G. Thermal conductivity of cast iron: Models and analysis of experiments. Journal of Applied Physics, 1991, 70(3): 1198–1206.

Nan C W, Birringer R, Gleiter H, et al. Effective thermal conductivity of particulate composites with interfacial thermal resistance. Journal of Applied Physics, 1997, 81(10): 6692–6699.

Velichko A, Wiegmann A, Mücklich F. Estimation of the effective conductivities of complex cast iron microstructures using FIBtomographic analysis. Acta Materialia, 2009, 57(17): 5023–5035.

Ma Z J, Wen Q, Tao D, et al. Numerical simulation and analysis of thermal conductivity of vermicular graphite cast iron. Journal of Xi’an Technological University, 2016, 36: 522–527. (In Chinese)

American Society for Testing and Materials. Standard test method for steady-state thermal transmission properties by means of the heat flow meter apparatus. ASTM International, 2017.

Li L B, Sun Y F. Handbook of physical properties of metal materials. China Machine Press, 2011: 96–104. (In Chinese)

Kai M, Bin L, Guang W. Application of measuring method of thermal conductivities. Storage and Process, 2005, 5(6): 35–38.

Stalhane B, Pyk S. New method for determining the coefficients of thermal conductivity. Tek. Tidskr, 1931, 61(28): 389–393.

Gustafsson S E. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Review of Scientific Instruments, 1991, 62(3): 797–804.

Parker W J, Jenkins R J, Butler C P, et al. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. Journal of Applied Physics, 1961, 32(9): 1679–1684.

Xu D M, Wang G Q, Chen X, et al. Effects of alloy elements on ductility and thermal conductivity of compacted graphite iron. China Foundry, 2018, 15(3): 189–195.

Dawson S. Compacted graphite iron: mechanical and physical properties for engine design. Vdi Berichte, 1999, 1472: 85–106.

Maxwell J C. A treatise on electricity and magnetism. Oxford: Clarendon Press, 1873.

Eucken A. General regulations for the thermal conductivity of different types of substances and aggregate states. Research in the Field of Engineering A, 1940, 11(1): 6–20. (In German)

Xu J Z, Gao B Z, Kang F Y. A reconstruction of Maxwell model for effective thermal conductivity of composite materials. Applied Thermal Engineering, 2016, 102: 972–979.

Bruggeman V D A G. Calculation of various physics constants in heterogenous substances, I: Dielectricity constants and conductivity of mixed bodies from isotropic substances. Annals of Physics, 1935, 416(7): 636–664. (In German)

Nan C W, Birringer R, Clarke D R, et al. Effective thermal conductivity of particulate composites with interfacial thermal resistance. Journal of Applied Physics, 1997, 81(10): 6692–6699.

Hasselman D P H, Johnson L F. Effective thermal conductivity of composites with interfacial thermal barrier resistance. Journal of Composite Materials, 1987, 21(6): 508–515.

Hamilton R L, Crosser O K. Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamentals, 1962, 1(3): 187–191.

Hatta H, Taya M, Kulacki F A, et al. Thermal diffusivities of composites with various types of filler. Journal of Composite Materials, 1992, 26(5): 612–625.

Holmgren D M, DiÃszegi A, Svensson I L, et al. Effects of transition from lamellar to compacted graphite on thermal conductivity of cast iron. Cast Metals, 2006, 19(6): 303–313.

Liu Y Z, Li Y F, Xing J D, et al. Effect of graphite morphology on the tensile strength and thermal conductivity of cast iron. Materials Characterization, 2018, 144: 155–165.

Matsushita T, Saro A G, Elmquist L, et al. On the thermal conductivity of CGI and SGI cast irons. International Journal of Cast Metals Research, 2018, 31(3): 135–143.

Hashin Z, Shtrikman S. A variational approach to the theory of the effective magnetic permeability of multiphase materials. Journal of Applied Physics, 1962, 33(10): 3125–3131.

Fredriksson H, Svensson I L. Computer simulation of the structure formed during solidification of cast iron. MRS Proceedings, 1984, 34: 273.

Dardati P M, Godoy L A, Celentano D J. Microstructural simulation of solidification process of spheroidal-graphite cast iron. Journal of Applied Mechanics, 2006, 73(6): 977–983.

Sun Y, Luo J, Mi G F, et al. Numerical simulation and defect elimination in the casting of truck rear axle using a nodular cast iron. Materials & Design, 2011, 32(3): 1623–1629.

Yin Y J, Tu Z X, Shen X, et al. Digitizing casting techology of nodular iron. Modern Cast Iron, 2018, 38(05): 63–68. (In Chinese)

Fukumasu N K, Pelegrino P L, Cueva G, et al. Numerical analysis of the stresses developed during the sliding of a cylinder over compact graphite iron. Wear, 2005, 259: 1400–1407.

Tkaya M B, Mezlini S, Mansori M E, et al. On some tribological effects of graphite nodules in wear mechanism of SG cast iron: Finite element and experimental analysis. Wear, 2009, 267(1): 535–539.

Ljustina G, Larsson R, Fagerström M. A FE based machining simulation methodology accounting for cast iron microstructure. Finite Elements in Analysis and Design, 2014, 80: 1–10.

Velichko A, Holzapfel C, Muecklich F. 3D characterization of graphite morphologies in cast iron. Advanced Engineering Materials, 2007, 9: 39–45.

Swartz E T, Pohl R O. Thermal boundary resistance. Reviews of Modern Physics, 1989, 61(3): 605.

Stoner R J, Maris H J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. Physical Review B: Condensed Matter, 1993, 48(22): 16373.

Yang W, Ma Z J, Yang Z, et al. Numerical simulation of the effect of oxidation on the thermal conductivity of vermicular graphite cast iron. Journal of Xi’an Technological University, 2019, 39: 458–462. (In Chinese)

Selin M. Using regression analysis to optimize the combination of thermal conductivity and hardness in compacted graphite iron. Key Engineering Materials, 2010, 457: 337–342.

Selin M. Tensile and thermal properties in compacted graphite irons at elevated temperatures. Metallurgical and Materials Transactions A, 2010, 41(12): 3100–3109.

Williams R K, Yarbrough D W, Masey J W, et al. Experimental determination of the phonon and electron components of the thermal conductivity of bcc iron. Journal of Applied Physics, 1981, 52(8): 5167–5175.

Williams R K, Graves R S, Weaver F J, et al. Effect of point defects on the phonon thermal conductivity of bcc iron. Journal of Applied Physics, 1987, 62(7): 2778–2783.

Terada Y, Ohkubo K, Mohri T, et al. Effects of alloying additions on thermal conductivity of ferritic iron. ISIJ international, 2002, 42(3): 322–324.

Rukadikar M C, Reddy G P. Influence of chemical composition and microstructure on thermal conductivity of alloyed pearlitic flake graphite cast irons. Journal of Materials Science, 1986, 21(12): 4403–4410.

Donaldson J W. The thermal conductivities of high-duty and alloy cast irons. British Foundryman, 1938, 32: 125–131.

Ding X F, Li X Z, Huang H, et al. Effect of Mo addition on ascast microstructures and properties of grey cast irons. Materials Science and Engineering: A, 2018, 718: 483–491.

Xu D M, Wang G Q, Chen X, et al. Effects of Mo and Ni on the thermal conductivity of compacted graphite iron at elevated temperature. International Journal of Cast Metals Research, 2019: 1–9.

Korn D, Pfeifle D P H, Niebuhr J. Electrical resistivity of metastable copper-iron solid solutions. Zeitschrift Für Physik B Condensed Matter, 1976, 23(1): 23–26.

Angus H T. Mechanical, physical and electrical properties of cast iron. Cast Iron Physical & Engineering Properties, 1976, 48(2): 34–160.

Ho C Y, Powell R W, Liley P E. Thermal conductivity of the elements. Journal of Physical and Chemical Reference Data, 1972, 1(2): 279–421.

Haynes W M. CRC Handbook of Chemistry and Physics, 97th Edition. Taylor & Francis Group, London, New York, 2017: 2117–2295.

Pehlke R D, Jeyarajan A, Wada H. Summary of thermal properties for casting alloys and mold materials. NASA STI/Recon Technical Report N, 1982, 83.

Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581.

Klemens P G, Pedraza D F. Thermal conductivity of graphite in the basal plane. Carbon, 1994, 32(4): 735–741.

Gorny M, Lelito J, Kawalec M, et al. Thermal conductivity of thin walled compacted graphite iron castings. ISIJ International, 2015, 55(9): 1925–1931.

Holmgren D, Källbom R, Svensson I L. Influences of the graphite growth direction on the thermal conductivity of cast iron. Metallurgical and Materials Transactions A, 2007, 38(2): 268–275.

Buning K D, Taran U N. Cast iron structure. China Machine Press, 1977. (In Chinese)

Lux B, Minkoff I, Mollard F, et al. Branching of graphite crystals growing from a metallic solution. In: Proc. 2nd Internat. Symposium on The Metallurgy of Cast Iron, 1976: 495–508.

Ruff G F, Wallace J F. Graphite configuration in gray iron. American Foundrymen’s Society, 1977 AFS Research Reports, 1978: 11–14.

Liu B C, et al. Study on morphology of vermicular graphite. Modern Cast Iron, 1982, (4): 8–11. (In Chinese)

Li C L, Liu B C, Wu D H. Graphite atlas of cast iron: photographs of optics and scanning electron microscope. China Machine Press, 1983. (In Chinese)

Velichko A, Holzapfel C, Siefers A, et al. Unambiguous classification of complex microstructures by their threedimensional parameters applied to graphite in cast iron. Acta Materialia, 2008, 56(9): 1981–1990.

Yang Z, Wang J W, Feng Y P, et al. Crystallization kinetics of eutectic gray cast iron. Transactions of Materials and Heat Treatment, 2017, 38: 152–158.

Fan H Y, et al. The influence of temperature on the thermal conductivity of cast irons. Materials Review, 1996, 3: 23–25. (In Chinese)

Peet M J, et al. Prediction of thermal conductivity of steel. International Journal of Heat and Mass Transfer, 2011, 54(11-12): 2602–2608.

Williams R K, Graves R S, Mcelroy D L. Thermal and electrical conductivities of an improved 9 Cr-1 Mo steel from 360 to 1000 K. International Journal of Thermophysics, 1984, 5(3): 301–313.

Julian C L. Theory of heat conduction in rare-gas crystals. Physical Review, 1965, 137(1A): 128–137.

Klemens P G. Theory of the a-plane thermal conductivity of graphite. Journal of Wide Bandgap Materials, 2000, 7(4): 332–339.

Zhou J Y. Colour metallography of cast iron. China foundry, 2009, 6(1): 57–69.

Wang G Q, Chen X, Li Y X, et al. Effects of alloying elements on thermal conductivity of pearlitic gray cast iron. Journal of Iron and Steel Research International, 2019, 26(9): 1022–1030.

Wang G Q, Chen X, Li Y X, et al. Effects of inoculation on the pearlitic gray cast iron with high thermal conductivity and tensile strength. Materials, 2018, 11(10): 1876.