Thermal conductivity of Al2O3/water nanofluids
Tóm tắt
Từ khóa
Tài liệu tham khảo
Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. Dev Appl Non Newton Flows. 1995;231:99–105.
Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sust Energ Rev. 2011;15:1646–68.
Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57:582–94.
Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf. 1999;13:474–80.
Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125:567–74.
Masuda H, Ebata A, Teramae K, Hishinuma N. lteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles(dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles). Netsu Bussei. 1993;4:227–33.
Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999;121:280–9.
Chon CH, Kihm KD, Lee SP, Choi SUS. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87:153107.
Li CH, Peterson GP. The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids. J Appl Phys. 2007;101:044312.
Zhang X, Gu H, Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. J Appl Phys. 2006;100:1–5.
Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E. 2007;76:061203.
Ju YS, Kim J, Hung MT. Experimental study of heat conduction in aqueous suspensions of aluminum oxide nanoparticles. J. Heat Transf. 2008;130:092403.
Oh DW, Jain A, Eaton JK, Goodson KE, Lee JS. Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method. Int J Heat Fluid Flow. 2008;29:1456–61.
Sommers AD, Yerkes KL. Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid. J. Nanoparticle Res. 2010;12:1003–14.
Sundar LS, Sharma KV. Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts. Int J Heat Mass Transf. 2010;53:1409–16.
Longo GA, Zilio C. Experimental measurement of thermophysical properties of oxide-water nano-fluids down to ice-point. Exp Therm Fluid Sci. 2011;35:1313–24.
Yiamsawasd T, Dalkilic AS, Wongwises S. Measurement of the thermal conductivity of titania and alumina nanofluids. Thermochim Acta. 2012;545:48–56.
Barbés B, Páramo R, Blanco E, Pastoriza-Gallego MJ, Piñeiro MM, Legido JL, Casanova C. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J. Thermal Anal Calorim. 2013;11:1615–25.
Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. I&EC Fundam. 1962;1:182–91.
Yu W, Choi SUS. The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model. J Nanopart Res. 2003;5:167–71.
Pak BC, Cho YI. Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles. Exp Heat Transfer. 1998;11:151–70.
Roy G, Nguyen CT, Lajoie PR. Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids. Superlatt Microstruct. 2004;35:497–511.
Minsta HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48:363–71.
Murshed SMS, Leong KC, Yang C. Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci. 2008;47:560–8.
Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf. 2011;54:4410–28.