Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers
Tài liệu tham khảo
Lin, 2014, Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation, Compos Sci Technol, 90, 123, 10.1016/j.compscitech.2013.10.018
Kiran, 2011, Improved mechanical properties of polymer nanocomposites incorporating graphene-like BN: dependence on the number of BN layers, Scripta Mater, 64, 592, 10.1016/j.scriptamat.2010.12.007
Zhi, 2009, Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties, Adv Mater, 21, 2889, 10.1002/adma.200900323
Wang, 2012, Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties, Nanoscale Res Lett, 7, 662, 10.1186/1556-276X-7-662
Jung, 2010, Preparations and thermal properties of micro- and nano-BN dispersed HDPE composites, Thermochim Acta, 499, 8, 10.1016/j.tca.2009.10.013
Kemaloglu, 2010, Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites, Thermochim Acta, 499, 40, 10.1016/j.tca.2009.10.020
Blase, 1994, Stability and band-gap constancy of boron-nitride nanotubes, Europhys Lett, 28, 335, 10.1209/0295-5075/28/5/007
Chen, 2004, Boron nitride nanotubes: pronounced resistance to oxidation, Appl Phys Lett, 84, 2430, 10.1063/1.1667278
Zettl, 2007, A new look at thermal properties of nanotubes, Phys Status Solidi B, 244, 4181, 10.1002/pssb.200776103
Chang, 2006, Isotope effect on the thermal conductivity of boron nitride nanotubes, Phys Rev Lett, 97, 10.1103/PhysRevLett.97.085901
Chang, 2005, Thermal conductivity of B-C-N and BN nanotubes, Appl Phys Lett., 86, 10.1063/1.1914963
Chopra, 1998, Measurement of the elastic modulus of a multi-wall boron nitride nanotube, Solid State Commun, 105, 297, 10.1016/S0038-1098(97)10125-9
Hernandez, 1998, Elastic properties of C and BxCyNz composite nanotubes, Phys Rev Lett, 80, 4502, 10.1103/PhysRevLett.80.4502
Golberg, 2007, Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes, Nano Lett, 7, 2146, 10.1021/nl070863r
Suryavanshi, 2004, Elastic modulus and resonance behavior of boron nitride nanotubes, Appl Phys Lett, 84, 2527, 10.1063/1.1691189
Kim, 2014, Fabrication of thermally conductive composite with surface modified boron nitride by epoxy wetting method, Ceram Int, 40, 5181, 10.1016/j.ceramint.2013.10.076
Gorbachev, 2011, Hunting for monolayer boron nitride: optical and Raman signatures, Small, 7, 465, 10.1002/smll.201001628
Lin, 2010, Soluble, exfoliated hexagonal boron nitride nanosheets, J Phys Chem Lett, 1, 277, 10.1021/jz9002108
Kim, 2012, Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition, Nano Lett, 12, 161, 10.1021/nl203249a
Song, 2010, Large scale growth and characterization of atomic hexagonal boron nitride layers, Nano Lett, 10, 3209, 10.1021/nl1022139
Shi, 2010, Synthesis of few-layer hexagonal boron nitride. Thin film by chemical vapor deposition, Nano Lett, 10, 4134, 10.1021/nl1023707
Coleman, 2011, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, 331, 568, 10.1126/science.1194975
Pakdel, 2014, Nano boron nitride flatland, Chem Soc Rev, 43, 934, 10.1039/C3CS60260E
Balandin, 2011, Thermal properties of graphene and nanostructured carbon materials, Nat Mater, 10, 569, 10.1038/nmat3064
Nika, 2012, Two-dimensional phonon transport in graphene, J Phys Condens Matter, 24, 10.1088/0953-8984/24/23/233203
Nika, 2017, Phonons and thermal transport in graphene and graphene-based materials, Rep Prog Phys, 80, 10.1088/1361-6633/80/3/036502
Jiang, 2015, Recent progress on fabrications and applications of boron nitride nanomaterials: a review, J Mater Sci Technol, 31, 589, 10.1016/j.jmst.2014.12.008
Golberg, 2010, Boron nitride nanotubes and nanosheets, ACS Nano, 4, 2979, 10.1021/nn1006495
Han, 2008, Structure of chemically derived mono- and few-atomic-layer boron nitride sheets, Appl Phys Lett, 93, 3, 10.1063/1.3041639
Lin, 2010, Defect functionalization of hexagonal boron nitride nanosheets, J Phys Chem C, 114, 17434, 10.1021/jp105454w
Yu, 2010, Vertically aligned boron nitride nanosheets: chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity, ACS Nano, 4, 414, 10.1021/nn901204c
Zhi, 2011, BN nanospheres as CpG ODN carriers for activation of toll-like receptor 9, J Mater Chem, 21, 5219, 10.1039/c1jm10199d
Tang, 2008, Synthetic routes and formation mechanisms of spherical boron nitride nanoparticles, Adv Funct Mater, 18, 3653, 10.1002/adfm.200800493
Chopra, 1995, Boron-nitride nanotubes, Science, 269, 966, 10.1126/science.269.5226.966
Zhi, 2010, Boron nitride nanotubes, Mater Sci Eng R, 70, 92, 10.1016/j.mser.2010.06.004
Wang, 2005, Low temperature growth of boron nitride nanotubes on substrates, Nano Lett, 5, 2528, 10.1021/nl051859n
Loiseau, 1998, Boron nitride nanotubes, Carbon, 36, 743, 10.1016/S0008-6223(98)00040-2
Golberg, 1996, Nanotubes in boron nitride laser heated at high pressure, Appl Phys Lett, 69, 2045, 10.1063/1.116874
Zhi, 2006, Boron nitride nanotubes/polystyrene composites, J Mater Res, 21, 2794, 10.1557/jmr.2006.0340
Xie, 2013, High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers, Compos Sci Technol, 85, 98, 10.1016/j.compscitech.2013.06.010
Marconnett, 2011, Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density, ACS Nano, 5, 4818, 10.1021/nn200847u
Gojny, 2006, Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites, Polymer, 47, 2036, 10.1016/j.polymer.2006.01.029
Bryning, 2005, Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites, Appl Phys Lett, 87, 161909, 10.1063/1.2103398
Yum, 2006, Measurement of wetting properties of individual boron nitride nanotubes with the Wilhelmy method using a nanotube-based force sensor, Nano Lett, 6, 329, 10.1021/nl052084l
Lee, 2009, Superhydrophobicity of boron nitride nanotubes grown on silicon substrates, Langmuir, 25, 4853, 10.1021/la900511z
Li, 2010, Superhydrophobic properties of nonaligned boron nitride nanotube films, Langmuir, 26, 5135, 10.1021/la903604w
Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896
Charlier, 1999, Microscopic growth mechanisms for carbon and boron-nitride nanotubes, Appl Phys A, 68, 267, 10.1007/s003390050887
Pakdel, 2012, Low-dimensional boron nitride nanomaterials, Mater Today, 15, 256, 10.1016/S1369-7021(12)70116-5
Li, 2011, Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling, J Mater Chem, 21, 11862, 10.1039/c1jm11192b
Nag, 2010, Graphene analogues of BN: novel synthesis and properties, ACS Nano, 4, 1539, 10.1021/nn9018762
Lian, 2011, Facile synthesis of 3D boron nitride nanoflowers composed of vertically aligned nanoflakes and fabrication of graphene-like BN by exfoliation, J Mater Chem, 21, 9201, 10.1039/c0jm04503a
Wang, 2012, High-yield boron nitride nanosheets from 'chemical blowing': towards practical applications in polymer composites, J Phys Condens Matter, 24, 314205, 10.1088/0953-8984/24/31/314205
Wang, 2011, “Chemical blowing” of thin-walled bubbles: high-throughput fabrication of large-area, few-layered BN and C-x-BN nanosheets, Adv Mater, 23, 4072, 10.1002/adma.201101788
Zhao, 2011, Facile synthesis and characterization of hexagonal boron nitride nanoplates by two-step route, J Am Ceram Soc, 94, 4496, 10.1111/j.1551-2916.2011.04752.x
Pacile, 2008, The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes, Appl Phys Lett, 92, 133107, 10.1063/1.2903702
Han, 2011, Convert graphene sheets to boron nitride and boron nitride-carbon sheets via a carbon-substitution reaction, Appl Phys Lett, 98, 10.1063/1.3593492
Pierson, 1975, Boron-nitride composites by chemical vapor-deposition, J Compos Mater, 9, 228, 10.1177/002199837500900302
Rozenberg, 1993, Regularities of pyrolytic boron-nitride coating formation on a graphite matrix, J Mater Sci, 28, 5528, 10.1007/BF00367825
Middleman, 1993, the role of gas-phase reactions in boron-nitride growth by chemical-vapor-deposition, Mater Sci Eng A, 163, 135, 10.1016/0921-5093(93)90587-5
Adams, 1981, Characterization of films formed by pyrolysis of borazine, J Electrochem Soc, 128, 1378, 10.1149/1.2127639
Auwarter, 2004, Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from B-trichloroborazine (ClBNH)(3), Chem Mater, 16, 343, 10.1021/cm034805s
Muller, 2005, Symmetry versus commensurability: epitaxial growth of hexagonal boron nitride on Pt(111) from B-trichloroborazine (ClBNH)(3), Chem Mater, 17, 3464, 10.1021/cm048629e
Constant, 1981, Preparation and characterization of thin protective films in silica tubes by thermal-decomposition of hexachloroborazine, J Less Common Met, 82, 113, 10.1016/0022-5088(81)90206-X
Paffett, 1990, Borazine adsorption and decomposition at Pt(111) and Ru(001) surfaces, Surf Sci, 232, 286, 10.1016/0039-6028(90)90121-N
Archer, 1979, Chemical vapor-deposition, Phys Technol, 10, 152, 10.1088/0305-4624/10/4/I03
Corso, 2004, Boron nitride nanomesh, Science, 303, 217, 10.1126/science.1091979
Auwarter, 1999, XPD and STM investigation of hexagonal boron nitride on Ni(111), Surf Sci, 429, 229, 10.1016/S0039-6028(99)00381-7
Huda, 2006, h-BN monolayer adsorption on the Ni (111) surface: a density functional study, Phys Rev, 74, 10.1103/PhysRevB.74.075418
Cavar, 2008, A single h-BN layer on Pt(111), Surf Sci, 602, 1722, 10.1016/j.susc.2008.03.008
Goriachko, 2007, Self-assembly of a hexagonal boron nitride nanomesh on Ru(0001), Langmuir, 23, 2928, 10.1021/la062990t
Preobrajenski, 2005, Monolayer of h-BN chemisorbed on Cu(111) and Ni(111): the role of the transition metal 3d states, Surf Sci, 582, 21, 10.1016/j.susc.2005.02.047
Preobrajenski, 2007, Influence of chemical interaction at the lattice-mismatched h-BN/Rh(111) and h-BN/Pt(111) interfaces on the overlayer morphology, Phys Rev, 75, 245412, 10.1103/PhysRevB.75.245412
Morscher, 2006, Formation of single layer h-BN on Pd(111), Surf Sci., 600, 3280, 10.1016/j.susc.2006.06.016
Corso, 2005, h-BN on Pd(110): a tunable system for self-assembled nanostructures?, Surf Sci., 577, L78, 10.1016/j.susc.2005.01.015
Vinogradov, 2012, One-dimensional corrugation of the h-BN monolayer on Fe(110), Langmuir, 28, 1775, 10.1021/la2035642
Allan, 2007, Tunable self-assembly of one-dimensional nanostructures with orthogonal directions, Nanoscale Res Lett, 2, 94, 10.1007/s11671-006-9036-2
Mueller, 2008, One-dimensional structure of boron nitride on chromium (110) – a study of the growth of boron nitride by chemical vapour deposition of borazine, Surf Sci, 602, 3467, 10.1016/j.susc.2008.06.037
Sutter, 2011, Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films, ACS Nano, 5, 7303, 10.1021/nn202141k
Jin, 2009, Fabrication of a freestanding boron nitride single layer and its defect assignments, Phys Rev Lett, 102, 10.1103/PhysRevLett.102.195505
Meyer, 2009, Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes, Nano Lett, 9, 2683, 10.1021/nl9011497
Meng, 2014, Polymer composites of boron nitride nanotubes and nanosheets, J Mater Chem C, 2, 10049, 10.1039/C4TC01998A
Sajjad, 2013, Advance in novel boron nitride nanosheets to nanoelectronic device applications, ACS Appl Mater Interfaces, 5, 5051, 10.1021/am400871s
Chubarov, 2014, Boron nitride: a new photonic material, Physica B Condens Matter, 439, 29, 10.1016/j.physb.2013.10.068
Nazarov, 2012, Functionalization and dispersion of hexagonal boron nitride (h-BN) nanosheets treated with inorganic reagents, Chem Asian J, 7, 554, 10.1002/asia.201100710
Kostoglou, 2015, Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets, Vacuum, 112, 42, 10.1016/j.vacuum.2014.11.009
Kostoglou, 2016, Few-step synthesis, thermal purification and structural characterization of porous boron nitride nanoplatelets, Mater Des, 110, 540, 10.1016/j.matdes.2016.08.011
Jia, 2016, Hexagonal boron nitride nanosheets as adsorbents for solid-phase extraction of polychlorinated biphenyls from water samples, Anal Chim Acta, 936, 123, 10.1016/j.aca.2016.07.019
Jo, 2013, Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride, Nano Lett, 13, 550, 10.1021/nl304060g
Burger, 2016, Review of thermal conductivity in composites: mechanisms, parameters and theory, Prog Polym Sci, 61, 1, 10.1016/j.progpolymsci.2016.05.001
Im, 2013, The thermal conductivity of Al(OH)(3) covered MWCNT/epoxy terminated dimethyl polysiloxane composite based on analytical Al(OH)(3) covered MWCNT, Compos A Appl Sci Manuf, 54, 159, 10.1016/j.compositesa.2013.07.020
Agrawal, 2015, Mathematical model for evaluating effective thermal conductivity of polymer composites with hybrid fillers, Int J Therm Sci, 89, 203, 10.1016/j.ijthermalsci.2014.11.006
Suplicz, 2016, Methodology development for through-plane thermal conductivity prediction of composites, Int J Therm Sci, 100, 54, 10.1016/j.ijthermalsci.2015.09.012
Giri, 2015, Kapitza resistance and the thermal conductivity of amorphous superlattices, J Appl Phys, 118, 10.1063/1.4934511
Shindé, 2006
Agari, 1993, Thermal-conductivity of a polymer composite, J Appl Polym Sci, 49, 1625, 10.1002/app.1993.070490914
Afanasov, 2009, Thermal conductivity and mechanical properties of expanded graphite, Inorg Mater, 45, 486, 10.1134/S0020168509050057
Gu, 2016, Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity, Int J Heat Mass Transfer, 92, 15, 10.1016/j.ijheatmasstransfer.2015.08.081
Yu, 2008, Enhanced thermal conductivity in a hybrid graphite nanoplatelet – carbon nanotube filler for epoxy composites, Adv Mater, 20, 4740, 10.1002/adma.200800401
Nanda, 2008, Thermal conductivity of single-wall carbon nanotube dispersions: role of interfacial effects, J Phys Chem C, 112, 654, 10.1021/jp711164h
Hauser, 2008, Effects of carbon fillers on the thermal conductivity of highly filled liquid-crystal polymer based resins, J Appl Polym Sci, 109, 2145, 10.1002/app.27934
Balandin, 2008, Superior thermal conductivity of single-layer graphene, Nano Lett, 8, 902, 10.1021/nl0731872
Martin-Gallego, 2011, Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites, Nanoscale Res Lett, 6, 610, 10.1186/1556-276X-6-610
Sun, 2013, Developing polymer composite materials: carbon nanotubes or graphene?, Adv Mater, 25, 5153, 10.1002/adma.201301926
Chung, 2001, Materials for thermal conduction, Appl Therm Eng, 21, 1593, 10.1016/S1359-4311(01)00042-4
Yao, 2015, The effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled glass fibers reinforced polymer composites, Compos A Appl Sci Manuf, 69, 49, 10.1016/j.compositesa.2014.10.027
Hammerstroem, 2011, Aluminum nanoparticles capped by polymerization of alkyl-substituted epoxides: ratio-dependent stability and particle size, Inorg Chem, 50, 5054, 10.1021/ic2003386
Ma, 2010, The preparation and cure kinetics researches of thermal conductivity epoxy/AlN composites, Polym Plast Technol Eng, 49, 354, 10.1080/03602550903532091
Lee, 2006, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Compos A Appl Sci Manuf, 37, 727, 10.1016/j.compositesa.2005.07.006
Li, 2010, Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride, J Phys Chem B, 114, 6825, 10.1021/jp101857w
Yuan, 2013, Synergistic effect of boron nitride flakes and tetrapod-shaped ZnO whiskers on the thermal conductivity of electrically insulating phenol formaldehyde composites, Compos A Appl Sci Manuf, 53, 137, 10.1016/j.compositesa.2013.05.012
Firdaus, 2012, Fabrication and characterization of nano filler-filled epoxy composites for underfill application, J Mater Sci-Mater El, 23, 1293, 10.1007/s10854-011-0587-3
Wu, 2015, Thermal conductivity of in situ epoxy composites filled with ZrB2 particles, Compos Sci Technol, 107, 61, 10.1016/j.compscitech.2014.12.007
Lindsay, 2012, Theory of thermal transport in multilayer hexagonal boron nitride and nanotubes, Phys Rev, 85, 035436, 10.1103/PhysRevB.85.035436
Shtein, 2015, Thermally conductive graphene-polymer composites: size, percolation, and synergy effects, Chem Mater., 27, 2100, 10.1021/cm504550e
Xiang, 2011, Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material, Sol Energy Mater Sol Cells, 95, 1811, 10.1016/j.solmat.2011.01.048
Ishida, 1998, Very high thermal conductivity obtained by boron nitride-filled polybenzoaxine, Thermochim Acta, 320, 177, 10.1016/S0040-6031(98)00463-8
Kuang, 2015, Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity, Small, 11, 1655, 10.1002/smll.201402569
Zhu, 2014, Highly thermally conductive papers with percolative layered boron nitride nanosheets, ACS Nano, 8, 3606, 10.1021/nn500134m
Xie, 2013, Ultra-flexible polymethyl methacrylate composites induced by sliding of micron-sized hexagonal boron nitride platelets, Ceram Int, 39, 8543, 10.1016/j.ceramint.2013.03.076
Hill RF, DaVanzo SP. Enhanced boron nitride composition and polymer based high thermal conductivity molding compound. In: Application EP, editor. US. EP ed. US1997.
Donnay, 2015, Boron nitride filled epoxy with improved thermal conductivity and dielectric breakdown strength, Compos Sci Technol, 110, 152, 10.1016/j.compscitech.2015.02.006
Camurlu, 2016, Nanocomposite glass coatings containing hexagonal boron nitride nanoparticles, Ceram Int, 42, 8856, 10.1016/j.ceramint.2016.02.133
Takahashi, 2014, Dielectric and thermal properties of isotactic polypropylene/hexagonal boron nitride composites for high-frequency applications, J Alloys Compd, 615, 141, 10.1016/j.jallcom.2014.06.138
Xu, 2000, Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments, Compos Interfaces, 7, 243, 10.1163/156855400750244969
Song, 2012, Polymer/boron nitride nanocomposite materials for superior thermal transport performance, Angew Chem Int, 51, 6498, 10.1002/anie.201201689
Khan, 2013, Polymer reinforcement using liquid-exfoliated boron nitride nanosheets, Nanoscale, 5, 581, 10.1039/C2NR33049K
Duan, 2013, A simple and green route to transparent boron nitride/PVA nanocomposites with significantly improved mechanical and thermal properties, Chin Chem Lett., 24, 17, 10.1016/j.cclet.2012.12.014
Xie, 2015, Boron nitride nanosheets as barrier enhancing fillers in melt processed composites, Nanoscale, 7, 4443, 10.1039/C4NR07228F
Zhang, 2013, Enhanced thermally conductivity and mechanical properties of polyethylene (PE)/boron nitride (BN) composites through multistage stretching extrusion, Compos Sci Technol, 89, 24, 10.1016/j.compscitech.2013.09.017
Mackay, 2006, General strategies for nanoparticle dispersion, Science, 311, 1740, 10.1126/science.1122225
Zhou, 2009, A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity, Compos A Appl Sci Manuf, 40, 830, 10.1016/j.compositesa.2009.04.005
Li, 2011, Study on thermal conductive BN/novolac resin composites, Thermochim Acta, 523, 111, 10.1016/j.tca.2011.05.010
Agari, 1990, Thermal-conductivity of a polymer filled with particles in the wide-range from low to superhigh volume content, J Appl Polym Sci, 40, 929, 10.1002/app.1990.070400526
Zhou, 2007, Study on insulating thermal conductive BN/HDPE composites, Thermochim Acta, 452, 36, 10.1016/j.tca.2006.10.018
Mosanenzadeh, 2016, Effect of filler arrangement and networking of hexagonal boron nitride on the conductivity of new thermal management polymeric composites, Compos B – Eng, 85, 24, 10.1016/j.compositesb.2015.09.021
Potts, 2011, Graphene-based polymer nanocomposites, Polymer, 52, 5, 10.1016/j.polymer.2010.11.042
Alexandre, 2000, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater Sci Eng R Rep, 28, 1, 10.1016/S0927-796X(00)00012-7
Wang, 2012, Graphene nanocomposites, 17
Lee, 2013, Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes, Small, 9, 2602, 10.1002/smll.201203214
Naskar, 2016, Polymer matrix nanocomposites for automotive structural components, Nat Nanotechnol, 11, 1026, 10.1038/nnano.2016.262
McNamara, 2012, Characterization of nanostructured thermal interface materials – a review, Int J Therm Sci, 62, 2, 10.1016/j.ijthermalsci.2011.10.014
Kim, 2014, Thermal and mechanical properties of epoxy composites with a binary particle filler system consisting of aggregated and whisker type boron nitride particles, Compos Sci Technol, 103, 72, 10.1016/j.compscitech.2014.08.012
Hou, 2014, Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity, Rsc Adv, 4, 44282, 10.1039/C4RA07394K
Kelkar, 2016, Boron nitride nanoparticle enhanced prepregs: a novel route for manufacturing aerospace structural composite laminate, Mater Chem Phys, 176, 136, 10.1016/j.matchemphys.2016.03.044
Li, 2011, Preparation and properties of thermally conductive photosensitive polyimide/boron nitride nanocomposites, J Appl Polym Sci, 121, 916, 10.1002/app.33631
Jin, 2013, Surface functionalization of hexagonal boron nitride and its effect on the structure and performance of composites, Appl Surf Sci, 270, 561, 10.1016/j.apsusc.2013.01.086
Wu, 2015, Multifunctional cyanate ester nanocomposites reinforced by hexagonal boron nitride after noncovalent biomimetic functionalization, ACS Appl Mater Interfaces, 7, 5915, 10.1021/acsami.5b00147
Zhang, 2016, Microplasma processed ultrathin boron nitride nanosheets for polymer nanocomposites with enhanced thermal transport performance, ACS Appl Mater Interfaces, 8, 13567, 10.1021/acsami.6b01531
Yung, 2007, Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing, J Appl Polym Sci, 106, 3587, 10.1002/app.27027
Muratov, 2015, Thermal conductivity of polypropylene composites filled with silane-modified hexagonal BN, Compos Sci Technol, 111, 40, 10.1016/j.compscitech.2015.03.003
Kim, 2014, Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity, Ceram Int, 40, 2047, 10.1016/j.ceramint.2013.07.117
Yu, 2012, Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties, Polymer, 53, 471, 10.1016/j.polymer.2011.12.040
Harrison, 2008, Polyethylene/boron nitride composites for space radiation shielding, J Appl Polym Sci, 109, 2529, 10.1002/app.27949
Huang, 2016, Boron nitride@graphene oxide hybrids for epoxy composites with enhanced thermal conductivity, RSC Adv, 6, 35847, 10.1039/C5RA27315C
Ahn, 2015, Fabrication of silicon carbonitride-covered boron nitride/Nylon 6,6 composite for enhanced thermal conductivity by melt process, Ceram Int, 41, 2187, 10.1016/j.ceramint.2014.10.018
Ahn, 2014, Thermal conductivity of polymer composites with oriented boron nitride, Thermochim Acta, 590, 138, 10.1016/j.tca.2014.06.029
Yung, 2010, Development of epoxy-matrix composite with both high-thermal conductivity and low-dielectric constant via hybrid filler systems, J Appl Polym Sci, 116, 518
Kochetov R, Andritsch T, Lafont U, Morshuis PHF, Picken SJ, Smit JJ, et al. Thermal behaviour of epoxy resin filled with high thermal conductivity nanopowders. EIC 2009.524-8.
Chiang, 2006, A study of encapsulation resin containing hexagonal boron nitride (hBN) as inorganic filler, J Inorg Organomet Polym Mater, 16, 175, 10.1007/s10904-006-9037-8
Jin, 2016, Functionalization of hexagonal boron nitride in large scale by a low-temperature oxidation route, Mater Lett, 175, 244, 10.1016/j.matlet.2016.04.008
Sainsbury, 2012, Oxygen radical functionalization of boron nitride nanosheets, J Am Chem Soc, 134, 18758, 10.1021/ja3080665
Pakdel, 2014, Plasma-assisted interface engineering of boron nitride nanostructure films, ACS Nano, 8, 10631, 10.1021/nn5041729
Xia, 2012, Anisotropic wetting surfaces with one-dimesional and directional structures: fabrication approaches, wetting properties and potential applications, Adv Mater, 24, 1287, 10.1002/adma.201104618
Liimatainen, 2013, Controlling liquid spreading using microfabricated undercut edges, Adv Mater, 25, 2275, 10.1002/adma.201204696
Jokinen, 2009, Microstructured surfaces for directional wetting, Adv Mater, 21, 4835, 10.1002/adma.200901171
Chu, 2010, Uni-directional liquid spreading on asymmetric nanostructured surfaces, Nat Mater, 9, 413, 10.1038/nmat2726
Chiou, 2007, Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties, Nat Nanotechnol, 2, 354, 10.1038/nnano.2007.147
Kim, 1997, Imbibition and flow of wetting liquids in noncircular capillaries, J Phys Chem B, 101, 855, 10.1021/jp961594o
Wang, 2008, Aqueous noncovalent functionalization and controlled near-surface carbon doping of multiwalled boron nitride nanotubes, J Am Chem Soc, 130, 8144, 10.1021/ja8020878
Zhi, 2005, Immobilization of proteins on boron nitride nanotubes, J Am Chem Soc, 127, 17144, 10.1021/ja055989+
Zhi, 2005, Perfectly dissolved boron nitride nanotubes due to polymer wrapping, J Am Chem Soc, 127, 15996, 10.1021/ja053917c
Tanimoto, 2013, Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: effects of filler particle size, aggregation, orientation, and polymer chain rigidity, ACS Appl Mater Interfaces, 5, 4374, 10.1021/am400615z
Song, 2012, Polymer/boron nitride nanocomposite materials for superior thermal transport performance, Angewandte Chemie-International Edition, 51, 6498, 10.1002/anie.201201689
Yuan, 2015, Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets, ACS Appl Mater Interfaces, 7, 13000, 10.1021/acsami.5b03007
Yuan, 2016, Thermal conductivity enhancement of platelets aligned composites with volume fraction from 10% to 20%, Int J Heat Mass Transfer, 94, 20, 10.1016/j.ijheatmasstransfer.2015.11.045
Kim, 2016, Vertical filler alignment of boron nitride/epoxy composite for thermal conductivity enhancement via external magnetic field, Int J Therm Sci, 100, 29, 10.1016/j.ijthermalsci.2015.09.013
Cho, 2011, Modification of BN nanosheets and their thermal conducting properties in nanocomposite film with polysiloxane according to the orientation of BN, Compos Sci Technol, 71, 1046, 10.1016/j.compscitech.2011.03.002
Cho, 2016, Insulating polymer nanocomposites with high-thermal-conduction routes via linear densely packed boron nitride nanosheets, Compos Sci Technol, 129, 205, 10.1016/j.compscitech.2016.04.033
Lin, 2013, Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation, ACS Appl Mater Interfaces, 5, 7633, 10.1021/am401939z
Erb, 2012, Composites reinforced in three dimensions by using low magnetic fields, Science, 335, 199, 10.1126/science.1210822
Boussaad S. Hexagonal boron nitride compositions characterized by interstitial ferromagnetic layers, process for preparing, and composites thereof with organic polymers. US2012.
Zhou, 2007, Thermal conductivity of boron nitride reinforced polyethylene composites, Mater Res Bull, 42, 1863, 10.1016/j.materresbull.2006.11.047
Sim, 2005, Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes, Thermochim Acta, 430, 155, 10.1016/j.tca.2004.12.024
Xu, 2001, Thermally conducting aluminum nitride polymer-matrix composites, Compos A Appl Sci Manuf, 32, 1749, 10.1016/S1359-835X(01)00023-9
Shin, 2013, Effect of BN filler on thermal properties of HDPE matrix composites, Ceram Int, 39, S569, 10.1016/j.ceramint.2012.10.137
Muratov, 2014, Thermal conductivity of polypropylene filled with inorganic particles, J Alloys Compd, 586, S451, 10.1016/j.jallcom.2012.11.142
Kim, 2016, Filler orientation of boron nitride composite via external electric field for thermal conductivity enhancement, Ceram Int, 42, 8657, 10.1016/j.ceramint.2016.02.098
Kemaloglu, 2009, Thermally conductive boron nitride/SEBS/EVA ternary composites: “processing and characterization”, Polym Compos, 10.1002/pc.20925
Cheewawuttipong, 2013, Thermal and mechanical properties of polypropylene/boron nitride composites, Energy Procedia, 34, 808, 10.1016/j.egypro.2013.06.817
Cakmakci, 2014, Preparation and characterization of thermally conductive thermoplastic polyurethane/h-BN nanocomposites, Polym Compos, 35, 530, 10.1002/pc.22692
Suplicz, 2013, Injection molding of ceramic filled polypropylene: the effect of thermal conductivity and cooling rate on crystallinity, Thermochim Acta, 574, 145, 10.1016/j.tca.2013.10.005
Dodiuk, 2013
Chen, 2016, Thermal conductivity of polymer-based composites: fundamentals and applications, Prog Polym Sci, 59, 41, 10.1016/j.progpolymsci.2016.03.001
Voo, 2012, Thermal properties and moisture absorption of nanofillers-filled epoxy composite thin film for electronic application, Polym Adv Technol, 23, 1620, 10.1002/pat.3039
Wu, 2016, Surface modification of boron nitride by reduced graphene oxide for preparation of dielectric material with enhanced dielectric constant and well-suppressed dielectric loss, Compos Sci Technol, 134, 191, 10.1016/j.compscitech.2016.08.015
Sato, 2010, Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces, J Mater Chem., 20, 2749, 10.1039/b924997d
Wang, 2016, Silver nanoparticle-deposited boron nitride nanosheets as fillers for polymeric composites with high thermal conductivity, Sci Rep, 6, 9
Shahil, 2012, Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials, Nano Lett, 12, 861, 10.1021/nl203906r
Goyal, 2012, Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials, Appl Phys Lett, 100, 10.1063/1.3687173
Shahil, 2012, Thermal properties of graphene and multilayer graphene: applications in thermal interface materials, Solid State Commun, 152, 1331, 10.1016/j.ssc.2012.04.034
Malekpour, 2014, Thermal conductivity of graphene laminate, Nano Lett, 14, 5155, 10.1021/nl501996v