Thermal conductivity and mechanical properties of expanded graphite

Inorganic Materials - Tập 45 Số 5 - Trang 486-490 - 2009
И. М. Афанасов1, Dariya Savchenko1, S. P. Ionov1, D. A. Rusakov1, A. N. Seleznev1, В. В. Авдеев1
1Moscow State University, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sorokina, N.E., Nikol’skaya, I.V., Ionov, S.G., and Avdeev, V.V. Interkalirovannye soedinenia grafita aktseptornogo tipa i novye uglerodnye materially na ikh osnove (Acceptor-Type Intercalated Graphite Compounds and New Derivative Carbon Materials), Izv. Akad. Nauk, Ser. Khim, 2005, vol. 54, no. 8, pp. 1–18.

Wang, W.P., Pan, C.Y., and Wu, J.S., Electrical Properties of Expanded Graphite / Poly(Styrene-co-Acrylonitrile) Composites, J. Phys. Chem. Solids, 2005, vol. 66, pp. 1695–1700.

Li, J., Kim, J., and Sham, M., Conductive Graphite Nanoplatelet / Epoxy Nanocomposites: Effects of Exfoliation and UV / Ozone Treatment of Graphite, Scripta Mater., 2005, vol. 53, pp. 235–240.

Xiao, P., Xiao, M., and Gong, K., Preparation of Exfoliated Graphite / Polystyrene Composite by Polymerization-Filling Technique, Polymer, 2001, vol. 42, pp. 4813–4816.

Li, W., Han, C, Liu, W., et al, Expanded Graphite Applied in the Catalytic Process as a Catalyst Support, Catal. Today, 2007, vol. 125, pp. 278–281.

Celzard, A., Furdin, G., Mareche, J., et al, Anisotropic Percolation in an Eposy-Graphite Disc Composite, Solid State Commun., 1994, vol. 92, no. 5, pp. 377–383.

Suarez-Garcia, F., Martinez-Alonso, A., Tascon, J.M.D., et al, Characterization of Porous Texture in Composite Adsorbents Based on Exfoliated Graphite and Polyfurfuryl Alcohol, Fuel Process Technol., 2002, vols. 77–78, pp. 401–407.

Afanasov, I.M., Shornikova, O.N., Vlasov, I.I., et al, Poristye uglerodnye materialy na osnove termorasshirennogo grafita (Porous Carbon Materials Based on Thermoexpanded Graphite), Neorgan. Mater., 2009, vol. 44, no. 2, pp. 171–175.

Mareche, J.F., Begin, D., Furdin, G., et al, Monolithic Activated Carbons from Resin Impregnated Expanded Graphite, Carbon, 2001, vol. 39, pp. 771–785.

Sorokina, N.E., Redchitz, A.V., Ionov, S.G., and Avdeev, V.V., Different Exfoliated Graphite as a Base of Sealing Materials, J. Phys. Chem. Solids, 2006 vol. 67, pp. 1202–1204.

Chung, D.D.L., Flexible Graphite for Gasketing, Adsorption, Electromagnetic Interference Shielding, Vibration Damping, Electrochemical Applications, and Stress Sensing, J. Mater. Eng. Perform., 2000, vol. 9, no. 2, pp. 161–163.

Avdeev, V.V., Seleznev, A.N., Afanasov, I.M., et al, Teplootrazhayushchii mnogosloinyi tsilindricheskiii ekran (Thermoreflecting Multilayer Cylindrical Screen), RF Patent 70971, 2007.

Avdeev, V.V., Seleznev, A.N., Afanasov, I.M., et al, Teplootrazhayushchii ekran (Thermoreflecting Screen), RF Patent Appl. 2008115399, 2008.

Vovchenko, L.L., Matzui, L.Yu., and Kulichenko, A.A., Thermal Characterization of Expanded Graphite and its Composites, Inorg, Mater., 2007, vol. 43, no. 43, pp. 597–601.

Py, X., Olives, R., and Mauran, S., Paraffin / Porous Graphite Matrix as a High and Constant Power Thermal Storage Material, Int. J. Heat Mass Transfer, 2001, vol. 44, pp. 2727–2737.

Bonnisel, M., Luo, L., and Tondeur, D., Compacted Exfoliated Natural Graphite as Heat Conduction Medium, Carbon, 2001, vol. 39, no. 43, pp. 2151–2161.

Celzard, A., Mareche, J.F., and Furdin, G., Modelling of Exfoliated Graphite, Prog. Mater. Sci., 2005, vol. 50, pp. 93–179.

Avdeev, V.V., Sorokina, N.E., Tverezovskaya, O.A., et al, Sintez soedinenii vnedreniya grafita s HNO 3 (Synthesis of Graphite Intercalation Compounds with HNO3), Vestn. Mosk. Univ., Ser. 2 (Chemistry), 1999, vol. 40, no. 6, pp. 422–425.

Sorokina, N.E., Maksimova, N.V., and Avdeev, V.V., Anodnoe okislenie grafita v 10–98% rastvoraph HNO 3 (Anodic Graphite Oxidation in 10 to 98% Nitric Acid Solutions), Neorgan. Mater., 2001, vol. 37, no. 4, pp. 441–447.

Spain, I.L., The Electronic Properties of Graphite, Chem. Phys. Carbon, 1973, vol. 8, pp. 1–150.

Uher, C., Hockey, R.L., and Ben-Jacob, E., Pressure Dependence of the c-Axis Resistivity of Graphite, Phys. Rev. B, 1987, vol. 35, no. 9, pp. 4483–4488.

Shornikova, O.N., Modifitsirovannyi interkalirovannyi grafit i penografit na ego osnove (Modified Intercalated Graphite and Derivative Foam Grafite), Cand. Sci. (Chem.) Dissertation, Moscow: Lomonosov State University, 2008.

Novak, I. Krupa, I., and Chodak, I., Analysis of Correlation Between Percolation Concentration and Elongation at Break in Filled Electroconductive Epoxy-Based Adhesives, Eur. Polym. J., 2003, vol. 39, no. 3, pp. 585–592.

Chiteme, C. and McLachlan, D.S., AC and DC Conductivity, Magnetoresistance, and Scaling in Cellular System, Phys. Rev. B, 2003, vol. 67, pp. 1–18.

Boudenne, A., Ibos, L., Fois, M., et al, Electrical and Thermal Behavior of Polypropylene Filled with Copper Particles, Composites, Part A, 2005, vol. 36, pp. 1545–1554.

Kirkpatrick, S., Percolation and Conduction, Rev. Mod. Phys., 1973, vol. 45, pp. 574–588.