Thermal characterization of cellulose nanocrystals isolated from sisal fibers using acid hydrolysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adsul, 2012, Facile approach for the dispersion of regenerated cellulose in aqueous system in the form of nanoparticles, Biomacromolecules, 13, 2890, 10.1021/bm3009022
Akerholm, 2004, Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy, Carbohydr. Res., 339, 569, 10.1016/j.carres.2003.11.012
Alemdar, 2008, Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls, Bioresour. Technol., 99, 1664, 10.1016/j.biortech.2007.04.029
Alvarez, 2004, Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites, Polym. Degrad. Stab., 84, 13, 10.1016/j.polymdegradstab.2003.09.003
Angle, 2001, Plasticized starch/tunicin whiskers nanocomposite materials 2, Mech. Behav., 15, 2921
Cranston, 2008, Birefringence in spin-coated films containing cellulose nanocrystals, Colloids Surf. A Physicochem. Eng. Aspects, 325, 44, 10.1016/j.colsurfa.2008.04.042
De Paula, 2012, Adding value to the Brazilian sisal: acid hydrolysis of its pulp seeking production of sugars and materials, Cellulose, 19, 975, 10.1007/s10570-012-9674-8
Driemeier, 2011, Evolution of cellulose crystals during prehydrolysis and soda delignification of sugarcane lignocellulose, Cellulose, 1509, 10.1007/s10570-011-9592-1
Dufresne, 2013, Nanocellulose: a new ageless bionanomaterial, Mater. Today, 16, 220, 10.1016/j.mattod.2013.06.004
Filpponen, 2010, Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels, Biomacromolecules, 11, 1060, 10.1021/bm1000247
Greenwood, 2003, Review of the measurement of zeta potentials in concentrated aqueous suspensions using electroacoustics, Adv. Colloid Interface Sci., 106, 55, 10.1016/S0001-8686(03)00105-2
Hassan, 2012, Fluorescent cellulose nanocrystals via supramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modified perylene, Mater. Sci. Eng. B, 177, 350, 10.1016/j.mseb.2011.12.043
Juntaro, 2012, Bacterial cellulose reinforced polyurethane-based resin nanocomposite: a study of how ethanol and processing pressure affect physical, mechanical and dielectric properties, Carbohydr. Polym., 87, 2464, 10.1016/j.carbpol.2011.11.020
Kalashnikova, 2012, Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface, Biomacromolecules, 13, 267, 10.1021/bm201599j
Khoshkava, 2013, Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites, Biomacromolecules, 14, 3155, 10.1021/bm400784j
Kuzmenko, 2013, Universal method for protein bioconjugation with nanocellulose scaffolds for increased cell adhesion, Mater. Sci. Eng. C. Mater. Biol. Appl., 33, 4599, 10.1016/j.msec.2013.07.031
Kvien, 2005, Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy, Biomacromolecules, 6, 3160, 10.1021/bm050479t
López-González, 2013, Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass, Bioresour. Technol., 143, 562, 10.1016/j.biortech.2013.06.052
Lemahieu, 2011, Extrusion of nanocellulose-reinforced nanocomposites using the dispersed nano-objects protective encapsulation (DOPE) process, Macromol. Mater. Eng., 296, 984, 10.1002/mame.201100015
Li, 2009, Cellulose whiskers extracted from mulberry: a novel biomass production, Carbohydr. Polym., 76, 94, 10.1016/j.carbpol.2008.09.034
Lin, 2013, PHysical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites, Macromolecules, 46, 5570, 10.1021/ma4010154
Lin, 2014, Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees, Nanoscale, 6, 5384, 10.1039/C3NR06761K
Liu, 2008, Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis, J. Anal. Appl. Pyrolysis, 82, 170, 10.1016/j.jaap.2008.03.007
Ly, 2010, Surface functionalization of cellulose by grafting oligoether chains, Mater. Chem. Phys., 120, 438, 10.1016/j.matchemphys.2009.11.032
Mariano, 2014, Cellulose nanocrystals and related nanocomposites: review of some properties and challenges, J. Polym. Sci. Part B Polym. Phys., 52, 791, 10.1002/polb.23490
Martínez-Sanz, 2013, Incorporation of poly(glycidylmethacrylate) grafted bacterial cellulose nanowhiskers in poly(lactic acid) nanocomposites: improved barrier and mechanical properties, Eur. Polym. J., 49, 2062, 10.1016/j.eurpolymj.2013.04.035
Martin, 2009, Caracterização química e estrutural de fibra de sisal da variedade agave sisalana, Polímeros, 19, 40, 10.1590/S0104-14282009000100011
Martin, 2010, Studies on the thermal properties of sisal fiber and its constituents, Thermochim. Acta, 506, 14, 10.1016/j.tca.2010.04.008
Muller, 2013, Structure and properties of polypyrrole/bacterial cellulose nanocomposites, Carbohydr. Polym., 94, 655, 10.1016/j.carbpol.2013.01.041
Novo, 2015, Subcritical water: a method for green production of cellulose nanocrystals, ACS Sustain. Chem. Eng., 3, 2839, 10.1021/acssuschemeng.5b00762
Oksman, 2011, Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production, Biomass Bioenergy, 35, 146, 10.1016/j.biombioe.2010.08.021
Oudiani, 2011, Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre, Carbohydr. Polym., 86, 1221, 10.1016/j.carbpol.2011.06.037
Potthast, 2006, Analysis of oxidized functionalities in cellulose, Adv. Polym. Sci., 205, 1, 10.1007/12_099
Roman, 2004, Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose, Biomacromolecules, 5, 1671, 10.1021/bm034519+
Roohani, 2008, Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites, Eur. Polym. J., 44, 2489, 10.1016/j.eurpolymj.2008.05.024
Sanna, 2013, Poly(N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose: a green approach to thermoresponsive hydrogels, Cellulose, 20, 2393, 10.1007/s10570-013-9988-1
Sehaqui, 2011, Strong and tough cellulose nanopaper with high specific surface area and porosity, Biomacromolecules, 12, 3638, 10.1021/bm2008907
Shao, 2015, Use of microfibrillated cellulose/lignosulfonate blends as carbon precursors: impact of hydrogel rheology on 3D printing, Ind. Eng. Chem. Res., 54, 10575, 10.1021/acs.iecr.5b02763
Siqueira, 2013, Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals, Carbohydr. Polym., 91, 711, 10.1016/j.carbpol.2012.08.057
Teodoro, 2011, Whiskers de Fibra de Sisal Obtidos sob Diferentes Condições de Hidrólise Ácida: Efeito do Tempo e da Temperatura de Extração, Polímeros, 21, 280, 10.1590/S0104-14282011005000048
Thomas, 2015, Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization, Int. J. Biol. Macromol., 81, 768, 10.1016/j.ijbiomac.2015.08.053
Wang, 2007, Surface modification of cellulose nanocrystals, Front. Chem. Eng. China, 1, 228, 10.1007/s11705-007-0041-5
Wang, 2007, Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups, Polymer (Guildf), 48, 3486, 10.1016/j.polymer.2007.03.062
Wu, 2013, Influence of temperature and humidity on nano-mechanical properties of cellulose nanocrystal films made from switchgrass and cotton, Ind. Crops Prod., 48, 28, 10.1016/j.indcrop.2013.03.032
Xue-bing, 2008, Preparation of peracetic acid from acetic acid and hydrogen peroxide: experimentation and modeling, Chin. J. Process Eng., 8, 35
Yao, 2008, Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis, Polym. Degrad. Stab., 93, 90, 10.1016/j.polymdegradstab.2007.10.012
Yorulmaz, 2009, Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis, Fuel Process. Technol., 90, 939, 10.1016/j.fuproc.2009.02.010