Thermal characterization of cellulose nanocrystals isolated from sisal fibers using acid hydrolysis

Industrial Crops and Products - Tập 94 - Trang 454-462 - 2016
M. Marcos1, Rodrigo Cercená2, Valdir Soldi1
1Department of Chemistry, Federal University of Santa Catarina, Florianopolis, SC, Brazil
2Department of Mechanical Engineering Federal University of Santa Catarina, Florianópolis, SC, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adsul, 2012, Facile approach for the dispersion of regenerated cellulose in aqueous system in the form of nanoparticles, Biomacromolecules, 13, 2890, 10.1021/bm3009022

Akerholm, 2004, Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy, Carbohydr. Res., 339, 569, 10.1016/j.carres.2003.11.012

Alemdar, 2008, Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls, Bioresour. Technol., 99, 1664, 10.1016/j.biortech.2007.04.029

Alvarez, 2004, Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites, Polym. Degrad. Stab., 84, 13, 10.1016/j.polymdegradstab.2003.09.003

Angle, 2001, Plasticized starch/tunicin whiskers nanocomposite materials 2, Mech. Behav., 15, 2921

Cheung, 1993, Small-angle scattering investigations, Macromolecules, 26, 5365, 10.1021/ma00072a012

Cranston, 2008, Birefringence in spin-coated films containing cellulose nanocrystals, Colloids Surf. A Physicochem. Eng. Aspects, 325, 44, 10.1016/j.colsurfa.2008.04.042

De Paula, 2012, Adding value to the Brazilian sisal: acid hydrolysis of its pulp seeking production of sugars and materials, Cellulose, 19, 975, 10.1007/s10570-012-9674-8

Driemeier, 2011, Evolution of cellulose crystals during prehydrolysis and soda delignification of sugarcane lignocellulose, Cellulose, 1509, 10.1007/s10570-011-9592-1

Dufresne, 2013, Nanocellulose: a new ageless bionanomaterial, Mater. Today, 16, 220, 10.1016/j.mattod.2013.06.004

Filpponen, 2010, Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels, Biomacromolecules, 11, 1060, 10.1021/bm1000247

Greenwood, 2003, Review of the measurement of zeta potentials in concentrated aqueous suspensions using electroacoustics, Adv. Colloid Interface Sci., 106, 55, 10.1016/S0001-8686(03)00105-2

Hassan, 2012, Fluorescent cellulose nanocrystals via supramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modified perylene, Mater. Sci. Eng. B, 177, 350, 10.1016/j.mseb.2011.12.043

Juntaro, 2012, Bacterial cellulose reinforced polyurethane-based resin nanocomposite: a study of how ethanol and processing pressure affect physical, mechanical and dielectric properties, Carbohydr. Polym., 87, 2464, 10.1016/j.carbpol.2011.11.020

Kalashnikova, 2012, Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface, Biomacromolecules, 13, 267, 10.1021/bm201599j

Khoshkava, 2013, Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites, Biomacromolecules, 14, 3155, 10.1021/bm400784j

Kuzmenko, 2013, Universal method for protein bioconjugation with nanocellulose scaffolds for increased cell adhesion, Mater. Sci. Eng. C. Mater. Biol. Appl., 33, 4599, 10.1016/j.msec.2013.07.031

Kvien, 2005, Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy, Biomacromolecules, 6, 3160, 10.1021/bm050479t

López-González, 2013, Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass, Bioresour. Technol., 143, 562, 10.1016/j.biortech.2013.06.052

Lemahieu, 2011, Extrusion of nanocellulose-reinforced nanocomposites using the dispersed nano-objects protective encapsulation (DOPE) process, Macromol. Mater. Eng., 296, 984, 10.1002/mame.201100015

Li, 2009, Cellulose whiskers extracted from mulberry: a novel biomass production, Carbohydr. Polym., 76, 94, 10.1016/j.carbpol.2008.09.034

Lin, 2013, PHysical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites, Macromolecules, 46, 5570, 10.1021/ma4010154

Lin, 2014, Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees, Nanoscale, 6, 5384, 10.1039/C3NR06761K

Liu, 2008, Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis, J. Anal. Appl. Pyrolysis, 82, 170, 10.1016/j.jaap.2008.03.007

Ly, 2010, Surface functionalization of cellulose by grafting oligoether chains, Mater. Chem. Phys., 120, 438, 10.1016/j.matchemphys.2009.11.032

Mariano, 2014, Cellulose nanocrystals and related nanocomposites: review of some properties and challenges, J. Polym. Sci. Part B Polym. Phys., 52, 791, 10.1002/polb.23490

Martínez-Sanz, 2013, Incorporation of poly(glycidylmethacrylate) grafted bacterial cellulose nanowhiskers in poly(lactic acid) nanocomposites: improved barrier and mechanical properties, Eur. Polym. J., 49, 2062, 10.1016/j.eurpolymj.2013.04.035

Martin, 2009, Caracterização química e estrutural de fibra de sisal da variedade agave sisalana, Polímeros, 19, 40, 10.1590/S0104-14282009000100011

Martin, 2010, Studies on the thermal properties of sisal fiber and its constituents, Thermochim. Acta, 506, 14, 10.1016/j.tca.2010.04.008

Muller, 2013, Structure and properties of polypyrrole/bacterial cellulose nanocomposites, Carbohydr. Polym., 94, 655, 10.1016/j.carbpol.2013.01.041

Novo, 2015, Subcritical water: a method for green production of cellulose nanocrystals, ACS Sustain. Chem. Eng., 3, 2839, 10.1021/acssuschemeng.5b00762

Oksman, 2011, Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production, Biomass Bioenergy, 35, 146, 10.1016/j.biombioe.2010.08.021

Oudiani, 2011, Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre, Carbohydr. Polym., 86, 1221, 10.1016/j.carbpol.2011.06.037

Potthast, 2006, Analysis of oxidized functionalities in cellulose, Adv. Polym. Sci., 205, 1, 10.1007/12_099

Roman, 2004, Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose, Biomacromolecules, 5, 1671, 10.1021/bm034519+

Roohani, 2008, Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites, Eur. Polym. J., 44, 2489, 10.1016/j.eurpolymj.2008.05.024

Sanna, 2013, Poly(N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose: a green approach to thermoresponsive hydrogels, Cellulose, 20, 2393, 10.1007/s10570-013-9988-1

Sehaqui, 2011, Strong and tough cellulose nanopaper with high specific surface area and porosity, Biomacromolecules, 12, 3638, 10.1021/bm2008907

Shao, 2015, Use of microfibrillated cellulose/lignosulfonate blends as carbon precursors: impact of hydrogel rheology on 3D printing, Ind. Eng. Chem. Res., 54, 10575, 10.1021/acs.iecr.5b02763

Siqueira, 2013, Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals, Carbohydr. Polym., 91, 711, 10.1016/j.carbpol.2012.08.057

Teodoro, 2011, Whiskers de Fibra de Sisal Obtidos sob Diferentes Condições de Hidrólise Ácida: Efeito do Tempo e da Temperatura de Extração, Polímeros, 21, 280, 10.1590/S0104-14282011005000048

Thomas, 2015, Nanocelluloses from jute fibers and their nanocomposites with natural rubber: preparation and characterization, Int. J. Biol. Macromol., 81, 768, 10.1016/j.ijbiomac.2015.08.053

Wang, 2007, Surface modification of cellulose nanocrystals, Front. Chem. Eng. China, 1, 228, 10.1007/s11705-007-0041-5

Wang, 2007, Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups, Polymer (Guildf), 48, 3486, 10.1016/j.polymer.2007.03.062

Wu, 2013, Influence of temperature and humidity on nano-mechanical properties of cellulose nanocrystal films made from switchgrass and cotton, Ind. Crops Prod., 48, 28, 10.1016/j.indcrop.2013.03.032

Xue-bing, 2008, Preparation of peracetic acid from acetic acid and hydrogen peroxide: experimentation and modeling, Chin. J. Process Eng., 8, 35

Yao, 2008, Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis, Polym. Degrad. Stab., 93, 90, 10.1016/j.polymdegradstab.2007.10.012

Yorulmaz, 2009, Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis, Fuel Process. Technol., 90, 939, 10.1016/j.fuproc.2009.02.010

Zhao, 2008, Preparation of peracetic acid from hydrogen peroxide, part II: kinetics for spontaneous decomposition of peracetic acid in the liquid phase, J. Mol. Catal. A Chem., 284, 58, 10.1016/j.molcata.2008.01.003