Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells

Aerospace Science and Technology - Tập 47 - Trang 42-53 - 2015
M. Mirzaei1, Y. Kiani2
1Department of Mechanical Engineering, Faculty of Engineering, University of Qom, Qom, Iran
2Mechanical Engineering Department, Amirkabir University of Technology, Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Liew, 2015, Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review, Compos. Struct., 120, 90, 10.1016/j.compstruct.2014.09.041

Liew, 2011, A review of meshless methods for laminated and functionally graded plates and shells, Compos. Struct., 93, 2031, 10.1016/j.compstruct.2011.02.018

Shen, 2009, Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments, Compos. Struct., 91, 9, 10.1016/j.compstruct.2009.04.026

Rafiee, 2013, Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams, Comput. Math. Appl., 66, 1147, 10.1016/j.camwa.2013.04.031

Pourasghar, 2015, Dynamic stability analysis of functionally graded nanocomposite non-uniform column reinforced by carbon nanotube, J. Vib. Control, 21, 2499, 10.1177/1077546313513625

Yas, 2012, Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation, Int. J. Press. Vessels Piping, 98, 119, 10.1016/j.ijpvp.2012.07.012

Shen, 2013, Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments, Eng. Struct., 56, 698, 10.1016/j.engstruct.2013.06.002

Ke, 2013, Dynamic stability of functionally graded carbon nanotube-reinforced composite beams, Mech. Adv. Mat. Struct., 20, 28, 10.1080/15376494.2011.581412

Yang, 2015, Dynamic buckling of thermo–electro–mechanically loaded FG-CNTRC beams, Int. J. Struct. Stab. Dyn., 10.1142/S0219455415400179

Wu, 2015, Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets, Int. J. Struct. Stab. Dyn., 15, 10.1142/S0219455415400118

Jafari, 2012, Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single walled carbon nanotubes, Composites, Part B, Eng., 43, 2031, 10.1016/j.compositesb.2012.01.067

Lei, 2013, Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method, Compos. Struct., 98, 160, 10.1016/j.compstruct.2012.11.006

Wu, 2014, Stability of carbon nanotube-reinforced composite plates with surface-bonded piezoelectric layers and under bi-axial compression, Compos. Struct., 111, 587, 10.1016/j.compstruct.2014.01.040

Shen, 2010, Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates, Mater. Des., 31, 3403, 10.1016/j.matdes.2010.01.048

Rafiee, 2014, Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection, Int. J. Non-Linear Mech., 59, 37, 10.1016/j.ijnonlinmec.2013.10.011

Zhang, 2015, An element-free IMLS-Ritz framework for buckling analysis of FG-CNT reinforced composite thick plates resting on Winkler foundations, Eng. Anal. Bound. Elem., 58, 7, 10.1016/j.enganabound.2015.03.004

Lei, 2015, Buckling of FG-CNT reinforced composite thick skew plates resting on Pasternak foundations based on an element-free approach, Appl. Math. Comput., 266, 773, 10.1016/j.amc.2015.06.002

Zhang, 2015, Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach, Composites, Part B, Eng., 75, 36, 10.1016/j.compositesb.2015.01.033

Liew, 2014, Postbuckling of carbon nanotube reinforced functionally graded cylindrical panels under axial compression using a meshless approach, Comput. Methods Appl. Mech. Eng., 268, 1, 10.1016/j.cma.2013.09.001

Lei, 2014, Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method, Compos. Struct., 113, 328, 10.1016/j.compstruct.2014.03.035

Shen, 2014, Postbuckling of axially compressed nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments, Composites, Part B, Eng., 67, 50, 10.1016/j.compositesb.2014.06.020

Shen, 2015, Thermal postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations, Compos. Struct., 123, 383, 10.1016/j.compstruct.2014.12.059

Shen, 2015, Nonlinear response of nanotube-reinforced composite cylindrical panels subjected to combined loadings and resting on elastic foundations, Compos. Struct., 131, 939, 10.1016/j.compstruct.2015.06.042

Shen, 2012, Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells, Composites, Part B, Eng., 43, 1030, 10.1016/j.compositesb.2011.10.004

Shen, 2011, Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, part I: axially-loaded shells, Compos. Struct., 93, 2096, 10.1016/j.compstruct.2011.02.011

Shen, 2011, Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, part II: pressure-loaded shells, Compos. Struct., 93, 2496, 10.1016/j.compstruct.2011.04.005

Shen, 2013, Postbuckling of nanotube-reinforced composite cylindrical shells under combined axial and radial mechanical loads in thermal environment, Composites, Part B, Eng., 52, 311, 10.1016/j.compositesb.2013.04.034

Shen, 2014, Torsional postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Compos. Struct., 116, 477, 10.1016/j.compstruct.2014.05.039

Jam, 2015, Buckling of pressurized functionally graded carbon nanotube reinforced conical shells, Compos. Struct., 125, 586, 10.1016/j.compstruct.2015.02.052

Zhang, 2014, Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels, Comput. Methods Appl. Mech. Eng., 273, 1, 10.1016/j.cma.2014.01.024

Zhang, 2015, Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates, Compos. Struct., 122, 172, 10.1016/j.compstruct.2014.11.070

Zhang, 2015, Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method, Compos. Struct., 120, 189, 10.1016/j.compstruct.2014.10.009

Zhang, 2014, Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels, Compos. Struct., 111, 205, 10.1016/j.compstruct.2013.12.035

Heydarpour, 2014, Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells, Compos. Struct., 117, 187, 10.1016/j.compstruct.2014.06.023

Wu, 2015, Quasi-3D stability and vibration analyses of sandwich piezoelectric plates with an embedded CNT reinforced composite core, Int. J. Struct. Stab. Dyn.

Shi, 2004, The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube reinforced composites, J. Eng. Mater. Technol., 126, 250, 10.1115/1.1751182

Fidelus, 2005, Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites, Composites, Part A, Appl. Sci. Manuf., 36, 1555, 10.1016/j.compositesa.2005.02.006

Jam, 2015, Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment, Compos. Struct., 132, 35, 10.1016/j.compstruct.2015.04.045

Reddy, 2003

Zhao, 2011, Free vibration analysis of functionally graded conical shell panels by a meshless method, Compos. Struct., 93, 649, 10.1016/j.compstruct.2010.08.014

Zhao, 2011, An element-free analysis of mechanical and thermal buckling of functionally graded conical shell panels, Int. J. Numer. Methods Eng., 86, 269, 10.1002/nme.3059

Akbari, 2015, Thermal buckling of temperature dependent FGM conical shells with arbitrary edge supports, Acta Mech., 226, 897, 10.1007/s00707-014-1168-3

Civalek, 2006, An efficient method for free vibration analysis of rotating truncated conical shells, Int. J. Press. Vessels Piping, 83, 1, 10.1016/j.ijpvp.2005.10.005

Civalek, 2007, Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: discrete singular convolution (DSC) approach, J. Comput. Appl. Math., 205, 251, 10.1016/j.cam.2006.05.001

Civalek, 2006, The determination of frequencies of laminated conical shells via the discrete singular convolution method, J. Mech. Mater. Struct., 1, 163, 10.2140/jomms.2006.1.163

Civalek, 2013, Vibration analysis of laminated composite conical shells by the method of discrete singular convolution based on the shear deformation theory, Composites, Part B, Eng., 45, 1001, 10.1016/j.compositesb.2012.05.018

Civalek, 2006, Free vibration analysis of composite conical shells using the discrete singular convolution algorithm, Steel Compos. Struct., 6, 353, 10.12989/scs.2006.6.4.353

Civalek, 2007, Linear vibration analysis of isotropic conical shell by discrete singular convolution (DSC), Struct. Eng. Mech., 25, 127, 10.12989/sem.2007.25.1.127

Han, 2007, Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites, Comput. Mater. Sci., 39, 315, 10.1016/j.commatsci.2006.06.011

Singh, 2009, Thermal buckling of laminated conical shells embedded with and without piezoelectric layer, J. Reinf. Plast. Compos., 28, 791, 10.1177/0731684407087133

Patel, 2005, Thermal postbuckling of laminated cross-ply truncated circular conical shell, Compos. Struct., 71, 101, 10.1016/j.compstruct.2004.09.030

Bhangale, 2006, Linear thermoelastic buckling and free vibration behavior of functionally graded truncated conical shells, J. Sound Vib., 292, 341, 10.1016/j.jsv.2005.07.039

Naj, 2008, Thermal and mechanical instability of functionally graded truncated conical shells, Thin-Walled Struct., 46, 65, 10.1016/j.tws.2007.07.011

Sofiyev, 2011, Thermal buckling of FGM shells resting on a two-parameter elastic foundation, Thin-Walled Struct., 49, 1304, 10.1016/j.tws.2011.03.018

Torabi, 2013, Linear thermal buckling analysis of truncated hybrid FGM conical shells, Composites, Part B, Eng., 50, 265, 10.1016/j.compositesb.2013.02.025