Thermal behavior of Ca2+ and Cu2+ oxalates obtained by precipitation in homogeneous solution from dimethyl oxalate hydrolysis

Journal of Thermal Analysis and Calorimetry - Tập 117 - Trang 1145-1150 - 2014
Myrian F. Castello1, Carolina V. Grupioni1, Ronaldo S. Nunes2, José Marques Luiz2
1Departamento Engenharia Mecânica, Faculdade de Engenharia de Guaratinguetá, UNESP – Univ Estadual Paulista, São Paulo, Brazil
2Departamento Física e Química, Faculdade de Engenharia de Guaratinguetá, UNESP – Univ Estadual Paulista, São Paulo, Brazil

Tóm tắt

Mixed calcium and copper oxalates, with different proportions of Ca2+ and Cu2+ ions, were precipitated by dimethyl oxalate hydrolysis in homogeneous solution. The compounds were evaluated by means of scanning electron microscopy, energy dispersive X-ray spectroscopy, thermogravimetry (TG), and differential thermal analysis (DTA). The results suggested quantitative precipitation without solid solution formation. From the TG and DTA curves, it was possible to evaluate the Ca2+ ion proportion in the solid phase and to confirm the precipitation of the individual species.

Tài liệu tham khảo

Deb N. Some heterobimetallic oxalate coordination precursors of lanthanum(III) of the type, M3[La(C2O4)3(H2O) m ]2·nH2O (M = Mn(II), Co(II), Ni(II) and Cu(II)). J Therm Anal Calorim. 2012;107:561–71. Krishnamurty KV, Harris GM. The chemistry of the metal oxalato complexes. Chem Rev. 1961;61:213–46. Birzescu M, Niculescu M, Dumitru R, Budrugeac P, Segal E. Copper(II) oxalate obtained through the reaction of 1,2-ethanediol with Cu(NO3)2 3H2O. J Therm Anal Calorim. 2008;94:297–303. Knaepen E, Van Bael MK, Schildermans I, Nouwen R, D’Haen J, D’Olieslaeger M, et al. Preparation and characterization of coprecipitates and mechanical mixtures of calcium–strontium oxalates using XRD, SEM-EDX and TG. Thermochim Acta. 1998;318:143–53. Donia AM. Synthesis, identification and thermal analysis of coprecipitates of silver-(cobalt, nickel, copper and zinc) oxalate. Polyhedron. 1997;16:3013–31. Deb N. A mechanistic approach on the solid state thermal decomposition of bimetallic oxalate coordination compounds of Mn(II), Fe(II) and Cu(II) with cobalt. J Anal Appl Pyrolysis. 2007;78:24–31. Deb N. An investigation on the solid state pyrolytic decomposition of bimetallic oxalate precursors of Ca, Sr and Ba with cobalt: a mechanistic approach. J Anal Appl Pyrolysis. 2007;80:389–99. Marta L, Horovitz O, Zaharescu M. Analytical study of oxalates coprecipitation. Leonardo J Sci. 2003;2:72–82. House Jr JE, Eveland RW. Kinetic studies on the dehydration of calcium oxalate monohydrate. J Solid State Chem. 1993;105:136–42. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrolysis. 2008;81:253–62. Kociba KJ, Gallagher PK. A study of calcium oxalate monohydrate using dynamic differential scanning calorimetry and other thermoanalytical techniques. Thermochim Acta. 1996;282–283:277–96. Deb N, Gogoi PK, Dass NN. Synthesis, characterization, and the thermal decomposition of copper (II) bis(oxalato)cuprate(II) dihydrate. Bull Chem Soc Jpn. 1988;61:4485–7. Dollimore D. The thermal decomposition of oxalates. A review. Thermochim Acta. 1987;117:331–63. Wendlandt WW. Thermal decomposition of scandium, yttrium, and rare earth metal oxalates. Anal Chem. 1958;30:58–61. Blazejowski J, Zadykowicz B. Computational prediction of the pattern of thermal gravimetry data for the thermal decomposition of calcium oxalate monohydrate. J Therm Anal Calorim. 2013;113:1497–503. Mianowski A. Analysis of the thermokinetics under dynamic conditions by relative rate of thermal decomposition. J Therm Anal Calorim. 2001;63:765–76. ul Haq I, Haider F. Synthesis and characterization of uniform fine particles of copper oxalate. Mater Lett. 2009;63:2355–7.