Thermal and Oxidation Response of UHTC Leading Edge Samples Exposed to Simulated Hypersonic Flight Conditions

Journal of the American Ceramic Society - Tập 96 Số 3 - Trang 907-915 - 2013
Triplicane A. Parthasarathy1,2, M. D. Petry1,2, Michael K. Cinibulk1, Tarun Mathur3, Mark Gruber4
1Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, 45433-7817 Ohio
2UES, Inc., Dayton, 45432 Ohio
3ISSI, Dayton, Ohio
4Air Force Research Laboratory, Aerospace Systems Directorate, Wright-Patterson AFB, Ohio

Tóm tắt

Sharp leading edge (LE) samples of UHTC (20 vol%SiCHfB2) and SiC were exposed to simulated hypersonic flight conditions using a direct‐connect scramjet rig and their thermal and oxidation responses measured. The measured back‐wall temperatures and scale thicknesses were significantly smaller than might be expected from stagnation temperatures at the LE. Furthermore, the scale that formed around the LE was more uniform than expected from the steep drop in cold wall heat flux with distance from the tip. These results were interpreted and rationalized using physics‐based models. An aerothermal model in combination with an oxidation model accounted for the observed scale thicknesses at the tip and their slight variation with distance. The scale thicknesses were similar to values reported for exposures in furnaces at temperatures calculated for the tip, but less than those reported in arc jet tests. The formation of hafnon (HfSiO4) and the absence of external glassy layer and of silica in the outer portions of the oxide region are unique to scramjet tested samples, presumably due to the high fluid flow (high shear and evaporation) rates.

Từ khóa


Tài liệu tham khảo

Ames Research Staff “Equations Tables and Charts for Compressible Flow”; National Advisory Committe for Aeronautics [Report 1135]1953.

10.2514/8.2564

10.2514/8.7517

10.1023/B:JMSC.0000041686.21788.77

10.1023/B:JMSC.0000041690.06117.34

10.1016/j.jeurceramsoc.2007.02.201

10.1002/9780470294680.ch27

10.1149/1.1618226

10.1023/B:JMSC.0000041691.41116.bf

10.1023/B:JMSC.0000041693.32531.d1

10.1016/j.compscitech.2005.04.003

10.1557/JMR.2008.0251

10.1111/j.1744-7402.2011.02647.x

10.1007/s10853-009-3799-7

10.1111/j.1551-2916.2009.03134.x

10.1016/j.jeurceramsoc.2010.03.001

10.1016/j.ceramint.2010.12.002

10.1016/j.jeurceramsoc.2010.04.019

10.1016/j.ast.2009.12.004

10.1111/j.1551-2916.2012.05226.x

10.1016/j.corsci.2010.11.018

10.1016/j.actaastro.2006.02.021

10.1111/j.1744-7402.2010.02515.x

D. J.Thomas “Design and Analysis of UHTC Leading Edge Attachment”; NASA tech report NASA/CR‐2002‐2115052002.

10.1016/j.ast.2004.12.003

10.1111/j.1551-2916.2006.01329.x

10.1016/j.actamat.2007.07.027

10.1111/j.1551-2916.2008.02660.x

10.1111/j.1551-2916.2008.02874.x

10.2514/1.39970

10.4028/www.scientific.net/KEM.434-435.144

10.1111/j.1551-2916.2011.04927.x

10.2514/2.5878

M.Gruber S.Smith andT.Mathur “Experimental Characterization of Hydrocarbon‐Fueled Axisymmetric Scramjet Combustor Flowpaths”; AIAA Paper 2011‐23112011.

NASA “U S Standard Atmosphere”; NOAA document ST 76‐15621976.

E. V.Zoby “Empirical Stagnation‐Point Heat‐Transfer Relation in Several Gas Mixtures at High Enthalpy Levels”; NASA tech note NASA TN D‐47991968.

S. M.ScalaandL. M.Gilbert “Theory of Hypersonic Laminar Stagnation Region Heat Transfer in Dissociating Gases”; NASA tech note NAS 7‐100 Accession No. N71‐709181963.

10.1063/1.556000

10.1016/j.matdes.2010.06.007