Thermal Stability, Smoke Density, and Flame Retardance of Ecotype Bio-Based Flame Retardant Agricultural Waste Bagasse/Epoxy Composites
Tóm tắt
Từ khóa
Tài liệu tham khảo
Luo, 2019, Synthesis of a novel reactive type flame retardant composed of phenophosphazine ring and maleimide for epoxy resin, Polym. Degrad. Stab., 165, 137, 10.1016/j.polymdegradstab.2019.05.008
Umar, K., Yaqoob, A.A., Ibrahim, M.N.M., Parveen, T., and Safian, M.T. (2021). Chapter Thirteen-Environmental Applications of Smart Polymer Composites. Smart Polymer Nanocomposites: Biomedical and Environmental Applications, Elsevier Inc.
Chen, 2019, A novel flame retardant derived from DOPO and piperazine and its application in epoxy resin: Flame retardance, thermal stability and pyrolysis behavior, Polym. Degrad. Stab., 166, 334, 10.1016/j.polymdegradstab.2019.06.011
Chen, 2016, Enhancement of flame-retardant performance of thermoplastic polyurethane with the incorporation of aluminum hypophosphite and iron-graphene, Polym. Degrad. Stab., 129, 275, 10.1016/j.polymdegradstab.2016.04.017
Mark, 2015, Halogenated flame-retardant concentrations in settled dust, respirable and inhalable particulates and polyurethane foam at gymnastic training facilities and residences, Environ. Int., 79, 106, 10.1016/j.envint.2015.02.014
Jiang, 2018, Flame retardancy of rice straw-polyethylene composites affected by in situ polymerization of ammonium polyphosphate/silica, Compos. Part A Appl. Sci. Manuf., 109, 1, 10.1016/j.compositesa.2018.02.023
Kavitha, 2021, Flame retarding cardanol based novolac-epoxy/rice husk composites, Mater. Chem. Phys., 263, 124225, 10.1016/j.matchemphys.2021.124225
Guna, 2020, Groundnut shell/rice husk agro-waste reinforced polypropylene hybrid biocomposites, J. Build. Eng., 27, 100991, 10.1016/j.jobe.2019.100991
Safian, M.T., Umar, K., Parveen, T., Yaqoob, A.A., and Ibrahim, M.N.M. (2021). Chapter Eight-Biomedical applications of smart polymer composites. Smart Polymer Nanocomposites: Biomedical and Environmental Applications, Elsevier Inc.
Guna, 2019, Valorization of sugarcane bagasse by developing completely biodegradable composites for industrial applications, Ind. Crop. Prod., 131, 25, 10.1016/j.indcrop.2019.01.011
Peng, 2021, A hyperbranched structure formed by in-situ crosslinking of additive flame retardant endows epoxy resins with great flame retardancy improvement, Compos. B, 224, 109162, 10.1016/j.compositesb.2021.109162
Xiong, 2018, The thermal decomposition behavior and kinetics of epoxy resins cured with a novel phthalide-containing aromatic diamine, Polym. Test., 68, 46, 10.1016/j.polymertesting.2018.02.012
Zhang, 2006, Synthesis of novel bisphenol containing phthalazinone and azomethine moieties and thermal properties of cured diamine/bisphenol/DGEBA polymers, Polymer, 47, 1785, 10.1016/j.polymer.2006.01.075
Hidalgo, 2013, Effect of the particle size and solids volume fraction on the thermal degradation behaviour of Invar 36 feedstocks, Polym. Degrad. Stab., 98, 2546, 10.1016/j.polymdegradstab.2013.09.015
Ozawa, 1965, A New Method of Analyzing Thermogravimetric Data, Bull. Chem. Soc. Jpn., 38, 1881, 10.1246/bcsj.38.1881
Corneliu, 2007, Kinetics of thermal degradation in non-isothermal conditions of some phosphorus-containing polyesters and polyesterimides, Eur. Polym. J., 43, 980, 10.1016/j.eurpolymj.2006.12.018
Quan, 2016, Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization, J. Anal. Appl. Pyrolysis, 121, 84, 10.1016/j.jaap.2016.07.005
Xu, 2019, Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin, J. Hazard. Mater., 363, 138, 10.1016/j.jhazmat.2018.09.086
Wang, 2016, The influence of zinc hydroxystannate on reducing toxic gases (CO, NOx and HCN) generation and fire hazards of thermoplastic polyurethane composites, J. Hazard. Mater., 314, 260, 10.1016/j.jhazmat.2016.04.029
Chiu, 2000, A study of the combustion and fire-retardance behaviour of unsaturated polyester/phenolic resin blends, Polym. Degrad. Stab., 70, 505, 10.1016/S0141-3910(00)00149-X
Li, 2019, Ammonium polyphosphate modified with b-cyclodextrin crosslinking rigid polyurethane foam: Enhancing thermal stability and suppressing flame spread, Polym. Degrad. Stab., 161, 166, 10.1016/j.polymdegradstab.2019.01.024
Wang, 2016, Flame retardancy and mechanical properties of epoxy thermosets modified with a novel DOPO-based oligomer, Polym. Degrad. Stab., 129, 156, 10.1016/j.polymdegradstab.2016.04.005
Yang, 2015, Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate, Polym. Degrad. Stab., 122, 102, 10.1016/j.polymdegradstab.2015.10.007
Velencoso, 2014, Thermal degradation and fire behaviour of novel polyurethanes based on phosphate polyols, Polym. Degrad. Stab., 101, 40, 10.1016/j.polymdegradstab.2014.01.012
Pal, 2011, Microstructural investigations of zirconium oxide—on core–shell structure of carbon nanotubes, J. Nanopart. Res., 13, 2597, 10.1007/s11051-010-0152-7
Qian, 2011, Synthesis of a novel hybrid synergistic flame retardant and its application in PP/IFR, Polym. Degrad. Stab., 96, 1134, 10.1016/j.polymdegradstab.2011.02.017
Shi, 2016, The novel silicon-containing epoxy/PEPA phosphate flame retardantfor transparent intumescent fire resistant coating, Appl. Surf. Sci., 385, 453, 10.1016/j.apsusc.2016.05.107
Wu, 2002, Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents, Polymer, 43, 4277, 10.1016/S0032-3861(02)00234-3