Thermal Properties, Microstructure and Microhardness of Cu–Al–Co Shape Memory Alloy System

Springer Science and Business Media LLC - Tập 67 - Trang 595-600 - 2014
Yıldırım Aydoğdu1, Ferdi Kürüm2, Mediha Kök2, Zehra Deniz Yakinci3, Ayşe Aydoğdu1
1Faculty of Science, Department of Physics, Superconductivity and Thermal Analysis Laboratory, Gazi University, Ankara, Turkey
2Department of Physics, Sciences Faculty, Firat University, Elazig, Turkey
3Vocational School of Health Service, Inonu University, Malatya, Turkey

Tóm tắt

In this study, the effects of Co content on the crystal structure, transformation temperatures and microstructure of Cu–Al–Co shape memory alloy system were investigated. It was found that Cu–Al–Co alloy system has also 18R type martensitic structure, which is commonly observed in copper-based systems. The transformation temperatures were found to be higher than 250 °C and they do not show a linear increase or decrease with Co content. The microstructural examination revealed the presence of martensite phase and precipitates. It was realized that the size of precipitate increases with increasing Co content. It can be stated that the hardness increased with increasing Co content. All these results point out that increasing Co content increases the strength of Cu–Al–Co shape memory alloy system.

Tài liệu tham khảo

Raju T M and Sampath V, J Mater Eng Perform 20 (2011) 767. Carvalho T M, Silva R A G and Adorno A T, J Therm Anal Calorim 1 (2009) 53. Silva R G A, Cuniberti A, Stipcich M and Adorno A T, Mater Sci Eng A 456 (2007) 5. Lazzini F, Romero R and Castro M L, Intermetallics 16 (2008) 1090. Vajpai S K, Dube R K and Sharma M, J Mater Sci 44 (2009) 4334. Ochoa-Lara M T, Flores-Zuniga H and Rios-Jara D, J Mater Sci 41 (2009) 5455. Gao Z Y, Wu Y, Tong Y X, Cai W, Zheng Y F and Zhao L C, J Mater Sci 41 (2006) 6165. Vajpai S K, Dube R K and Sangal S, Mater Sci Eng A 570 (2013) 32. Montecinos S and Simison S (2013) Corros Sci 74 (2013) 387. Sutou Y, Omori T, Kainuma R and Ishida K, Acta Mater 61 (2013) 3842. Lopez-Ferrenoa I, Breczewskib T, Ruiz-Larreab I, Lopez-Echarria A, Nób M L and San Juan J, J Alloy Compd (2012) doi:10.1016/j.jallcom.2012.02.006. Sade M, Yawnya A, Loveya F C and Torra V, Mater Sci Eng A 528 (2011) 7871. Chang S H, Mater Chem Phys 125 (2011) 358. Silva R A G, Paganotti A, Gama S, Adorno A T, Carvalho T M and Santos C M A, Mater Charac 75 (2013) 194. Ma Y Q, Jiang C B and Xu H B, Acta Metall Sin 16–6 (2003) 445. Funakoba H, Shape Memory Alloys, Kennedy J B, Gordon and Breach Science Publishers, London (1987). Guilemany J M and Fernandez J, J Mater Sci 31 (1996) 4981. Aydogdu A, Aydogdu Y and Adiguzel O, J Mater Process Tech 153–154 (2004) 164. Zhang G F, Sauvage X, Wang J T and Langdon T G, J Mater Sci (2013) Doi:10.1007/s10853-013-7153-8. Lojen G, Gojić M and Anžel I, J Alloy Compd (2013) doi:10.1016/j.jallcom.2013.06.136. Izadinia M and Dehghani K, Trans. Nonferrous Met Soc China 21 (2011) 2037. Amini R, Mousavizad S M M, Abdollahpour H,Ghaffari M,Alizadeh M and Okyay A K, Adv Powder Technol (2013) 10.1016/j.apt.2013.03.005. Amini R, Shamsipoor A, Ghaffari M, Alizadeh M and Okyay A K, Mater Charac 84 (2013) 169. Kim M S,Jeon Y M, Im Y M, Lee Y H, and Nam T H, Transition Electr Electron Mater, 12–1 (2011) 20. Ma Y, Jiang C, Deng L and Xu H, J Mater Sci Technol 19–5 (2003) 431.