Thermal Performance of Constrained Melting of PCM Inside an Elliptical Capsule of Two Orientations

Nabeel S. Dhaidan1
1Mechanical Engineering Department, Faculty of Engineering, University of Kerbala, Kerbala, Iraq

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14(2):615–628

Akeiber H et al (2016) A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew Sustain Energy Rev 60:1470–1497

Alawadhi EM (2008) Thermal analysis of a building brick containing phase change material. Energy Build 40:351–357

Assis E, Katsman L, Ziskind G, Letan R (2007) Numerical and experimental study of melting in a spherical shell. Int J Heat Mass Transf 50:1790–1804

Chen WZ, Yang QS, Dai MQ, Cheng SM (1998) An analytical solution of the heat transfer process during contact melting of phase change material inside horizontal elliptical tube. Int J Energy Res 22(2):131–140

Costa M, Oliva A, Pérez-Segarra CD (1997) Three- dimensional numerical study of melting inside an isothermal horizontal cylinder. Numer Heat Transfr, Part A-Appl 32:531–553

Dhaidan ND (2017a) Nanostructures assisted melting of phase change materials in various cavities. Appl Therm Eng 111:193–212

Dhaidan ND (2017b) Melting phase change of n-eicosane inside triangular cavity of two orientations. J Renew Sustain Energy 9:054101

Dhaidan ND, Khodadadi JM (2015) Melting and convection of phase change materials in different shape containers: a review. Renew Sustain Energy Rev 43:449–477

Dhaidan ND, Khodadadi JM (2017) Improved performance of latent heat energy storage systems utilizing high thermal conductivity fins: a review. J Renew Sustain Energy 9:034103

Fan L, Khodadadi JM (2011) Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev 15(1):24–46

Farid MM, Khudhair AM, Siddiqu AK, Al-Hallaj RS (2004) A review on phase change energy storage: materials and applications. Energy Convers Manag 45(9–10):1597–1615

Fomin SA, Saitoh TS (1999) Melting of unfixed material inside a spherical capsule with nonisothermal wall. Int J Heat Mass Transf 42(22):4197–4205

Fomin S, Wilchinsky A (2002) Shape-factor effect on melting in an elliptic capsule. Int J Heat Mass Transf 45(4):3045–3054

Fomin S, Wilchinsky A, Saitoh T (2000) Close-contact melting inside an elliptical cylinder. ASME J Solar Energy Eng 122(4):192–195

Hasnain SM (1998) Review on sustainable thermal energy storage technologies, part I: heat storage materials and techniques. Energy Convers Manag 39(11):127–138

Hirose K, Yoshii T, Watanabe H (2003) Melting heat transfer of phase change material in elliptical tubes immersed in working fluid. Nippon Dennetsu Shinpojiumu Koen Ronbunshu 40(3):671–672

Ho J, Viskanta R (1984) Heat transfer during inward melting in a horizontal tube. Int J Heat Mass Transf 27(5):705–716

Hosseinizadeh SF, Rabienataj Darzi AA, Tan FL, Khodadadi JM (2013) Unconstrained melting inside a sphere. Int J Therm Sci 63:55–64

http://www.rubitherm.eu/en/index.php/productcategory/organische-pcm-rt

Kenisarin M, Mahkamov K (2007) Solar energy storage using phase change materials. Renew Sustain Energy Rev 11(9):1913–1965

Khodadadi JM, Zhang Y (2001) Effects of buoyancy-driven convection on melting within spherical containers. Int J Heat Mass Transf 44:1605–1618

Khot SA, Sane NK, Gawali BS (2011) Experimental investigation of phase change phenomena of paraffin wax inside a capsule. Int J Eng Trends Technol 2(2):67–71

Nicholas D, Bayazitoglu Y (1980) Heat transfer and melting front within a horizontal cylinder. ASME J Solar Energy 102:229–232

Ogoh W, Groulx D (2012) Effects of the heat transfer fluid velocity on the storage characteristics of a cylindrical latent heat energy storage system. Heat Mass Transf 48(3):439–449

Regin AF, Solanki SC, Saini JS (2006) Latent heat thermal energy storage using cylindrical capsule: numerical and experimental investigations. Renew Energy 31:2025–2041

Rizan MM, Tan FL, Tso CP (2012) An experimental study of n-ctadecane melting inside a sphere subjected to constant heat rate at surface. Int Commun Heat Mass Transf 39:1624–1630

Saitoh TS, Hoshi A (1996) Experimental investigation on combined close-contact and natural convection in horizontal cylindrical and spherical capsules. In: IEEE, energy conversion engineering conference, 3, IECEC 96, Proceedings of the 31st intersociety, pp 2090–2094

Saitoh TS, Hoshi A (1997) Analysis of close- contact melting with inner wall temperature variation in a horizontal cylindrical capsule. In: IEEE energy conversion engineering conference, 4, IECEC-97, Proceedings of the 32nd intersociety, pp 1641–1645

Sharma SD, Sagara K (2005) Latent heat storage materials and systems: a review. Int J Green Energy 2(1):1–56

Sparrow EM, Geiger GT (1986) Melting in a horizontal tube with the solid either constrained or free to fall under gravity. Int J Heat Mass Transf 29(7):1007–1016

Tan FL (2008) Constrained and unconstrained melting inside a sphere. Int Commun Heat Mass Transf 35:466–475

Tan FL, Hosseinizadeh SF, Khodadadi JM, Fan L (2009) Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. Int J Heat Mass Transf 52:3464–3472

Torres Ledesma J, Łapka P, Domañski R, Casares FS (2013) Numerical simulation of the solar thermal energy Storage system for domestic hot water Supply located in south Spain. Therm Sci 17(2):431–442

Veerappan M, Kalaiselvam S, Iniyan S, Ranko G (2009) Phase change characteristic study of spherical PCMs in solar energy storage. Sol Energy 83:1245–1252

Zalba B, Marin JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23:251–283