Thermal Analysis of a Composite Centrifugal Compressor Impeller

Springer Science and Business Media LLC - Tập 95 Số 3 - Trang 625-635 - 2022
Л. В. Быков1, A. D. Ezhov2, L. A. Martynyuk3, D. B. Afanas’ev4, М. А. Мезенцев4
1Moscow Aviation Institute (MAI) (National Research University)
2Moscow Aviation Institute (MAI) (National Research University), Moscow, Russia
3Moscow Aviation Institute (MAI) (National Research University), 4 Volokolamskoye Hwy, Moscow, 125993, Russia
4P. I. Baranov Central Institute of Aviation Motor Development (TsIAM), Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

D. P. Pastuszak and A. Muc, Application of composite materials in modern constructions, Key Eng. Mater., 542, 119–129 (2013).

O. Hisaichi, M. Shoju, O. Masakazu, M. Kaoru, and S. Tadashi, Potential application of ceramic matrix composites to aero-engine components, Compos. Part A: Appl. Sci. Manuf., 30, Issue 4, 489–496; https://doi.org/10.1016/S1359-835X(98)00139-0 (1999).

L. A. Martynyuk, L. V. Bykov, A. D. Ezhov, P. I. Talalaeva, and D. V. Afanasiev, Experience in using anisotropic properties of composites in engineering the compressor impeller of a small-size gas turbine engine, MATEC Web Conf., No. 329, Article ID 02019 (2020).

A. D. Ezhov, L. V. Bykov, S. Yu. Mesnyankin, E. A. Bogachev, and A. S. Razina, Further development and optimization of design elements with account for thermal deformations, Tepl. Protsessy Tekh., No. 11, 510–516 (2015).

V. V. Vikulin, I. Y. Kelina, A. S. Shatalin, et al., Advanced ceramic structural materials, Refract. Ind. Ceram., No. 45, 383–386 (2004); https://doi.org/10.1007/s11148-005-0017-2.

B. A. Bulgakov, A. V. Babkin, A. A. Bogolyubov, E. S. Afanas'eva, and A. V. Kepman, Mechanical and physicochemical properties of binders for polymer composite materials on the basis of low-melting phthalonitrile monomers, Izv. Akad. Nauk, Ser. Khim., No. 1, No. 1, 287–290 (2016).

X. Zheng, L. Jin, T. Du, B. Gan, F. Liu, and H. Qian, Eff ect of temperature on the strength of a centrifugal compressor impeller for a turbocharger, Proc. Inst. Mech. Eng. C, J. Mech. Eng. Sci., 227, 896–904(2012)

M. Seyyedvahid and F. Ali, Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fi ber reinforced polymer composites, Compos. Part B: Engineering, 72, 116–129 (2015).

V. V. Sychev, A. A. Vasserman, A. D. Kozlov, G. A. Spiridonov, and V. A. Tsymarnyi, Thermodynamic Properties of Air, GSSSD (State Service for Standard Reference Data), Ser. Monografi i, Izd. Standartov, Moscow (1978).

V. P. Burdakov, B. V. Dzyubenko, S. Yu. Mesnyankin, and T. V. Mikhailova, Thermodynamics. In 2 parts: Part 1. Basic Course. Texbook for Institutions of Higher Leaning [in Russian], Drofa, Moscow (2009).

K. V. Mikhailovskii, P. V. Prosuntsov, and S. V. Reznik, Development of thermally high-conductive polymer composite materials for space structures, Vestn. MGTU im. N. É. Baumana, Ser. "Mashinostroenie," No. 3, 98–106 (2012).

E. N. Kablov, G. M. Gunyaev, S. I. Il'chenko, and V. V. Krivonos, Structural carbon composites with higher conductivity, Aviats. Mater. Tekhnol., No. 2, 25–36 (2004).

R. K. Aggarival, Evaluation of relative wettability of carbon fibers, Carbon, No. 15, p. 291 (1977).

E. R. Ashikhmina, N. M. Petrov, and P. V. Prosuntsov, Evaluation the complex of thermal properties for epoxy-based GFRP used in wing of tourist class reusable space vehicle, IOP Conf. Ser.: Mater. Sci. Eng., 934, Article ID 012059 (2020); DOI 10.1088/1757-899X/934/1/012059.

W. J. Parker, Flash method of determining thermal diffusivity, heat capacity and thermal conductivity, J. Appl. Phys., 32, No. 9, 1679–1684 (1961).

A. D. Ezhov, Numerical solution of the problem of contact interaction of rough surfaces of propulsion systems, Vestn. Mos. Aviats. Inst., 23, No. 1, 68–79 (2016).

V. A. Mal'kov, O. N. Favorskii, and V. N. Leont'ev, Contact Heat Transfer in Gas-Turbine Engines and Propulsion Systems [in Russian], Mashinostroenie, Moscow (1978).