Thermal Activation of Molecular Tungsten Halide Clusters with the Retention of an Octahedral Metal Framework and the Catalytic Dehydration of Alcohols to Olefins as a Solid Acid Catalyst
Tóm tắt
When the molecular tungsten halide cluster (H3O)2[(W6Cl8)Cl6]·6H2O, with an octahedral metal framework, is heated to 50 and 150 °C in flowing helium gas, it changes into (H3O)2[(W6Cl8)Cl6] and [(W6Cl8)Cl4(H2O)2], respectively. Activation at 250 °C yields a poorly crystallized solid state cluster, [W6Cl8]Cl2Cl4/2, which exhibits catalytic activity for the dehydration of ethanol to yield ethylene and a small amount of ethyl ether and acetal. The activity is attributed to the Brønsted acidity of the hydroxo ligand that is produced by elimination of hydrogen chloride from the chloro and aqua ligands. The catalytic activity increases with increasing temperature, and reaches a maximum at 300 °C. The catalytic activity then disappears above 350 °C, at which temperature the crystallinity of the cluster improves and the active sites are included in the crystal. In the case of primary alcohols, the reactivity decreases with increasing length of the carbon chain, and secondary alcohols are more reactive than the corresponding primary alcohols. Halide clusters of niobium, molybdenum, and tantalum having the same metal framework are also active catalysts for these reactions.
Tài liệu tham khảo
Mingos D. M. P., Wales D. J. (1990) Introduction to Cluster Chemistry Prentice-Hall, New Jersey
Lee S. C., Holm R. H.. (1990) Angew. Chem. Int. Ed. Engl. 29: 840
Corbett J. D. (1992) NATO ASI ser., Ser. C, Math. Phys. Sci. 382: 27
Prokopuk N., Shriver D. F. (1999) Adv. Inorg. Chem. 46: 1
Corbett J. D. (1992) Pure Appl. Chem. 64: 1395
Corbett J. D. (1990) Pure Appl. Chem. 62: 103
T. Chihara and S. Kamiguchi (2002). Chem. Lett. 70
Kamiguchi S., Watanabe M., Kondo K., Kodomari M., Chihara T. (2003) J. Mol. Catal. A 203: 153
Kamiguchi S., Nakamura A., Suzuki A., Kodomari M., Nomura M., Iwasawa Y., Chihara T. (2005) J. Catal. 230: 204
Kamiguchi S., Kondo K., Kodomari M., Chihara T. (2004) J. Catal. 223: 54
Kamiguchi S., Nishida S., Kurokawa H., Miura H., Chihara T. (2005) J. Mol. Catal. A 226: 1
M. E. Winfield, in P. H. Emmett (ed.), Catalysis (Reinhold, New York, 1960) VII, pp. 93―182
Pines H., Manassen J. (1966) Adv. Catal. 16: 49
Park C., Keane M. A. (2001) J. Mol. Catal. A 166: 303
T. Okuhara , A. Kasai, N. Hayakawa, M. Misono, and Y. Yoneda (1981). Chem. Lett. 391
J. Haber, , K. Pamin, L. Matachowski, B. Napruszewska, and J. Poltowicz (2002). J. Catal. 207, 296
Saito Y., Cook P. N., Niiyama H., Echigoya E. (1985) J. Catal. 95: 49
Pizzio L. R., Vazquez P. G., Caceres C. V., Blanco M. N., Alesso E. N., Erlich M. I., Torviso R., Finkielsztein L., Lantano B., Moltrasio G. Y., Aguirre J. M. (2004) Catal. Lett. 93: 67
Haber J., Pamin K., Matachowski L., Mucha D. (2003) Appl. Catal. A 256: 141
Lundeen A. J., Hoozer R. V. (1967) J. Org. Chem. 32: 3386
Lundeen A. J., Hoozer R. V. (1963) J. Am. Chem. Soc. 85: 2180
Kamiguchi S., Chihara T. (2003) Catal. Lett. 85: 97
Koknat F. W., Parson J. A., Vongvusharintra A. (1974) Inorg. Chem. 13: 1699
Nannelli P., Block B. P. (1970) Inorg. Synth. 12: 170
Kolesnichenko V., Messerle L. (1998) Inorg. Chem. 37: 3660
Ehrlich G. M., Rauch P. E., Disalvo F. J. (1995) Inorg. Synth. 30: 1
Kamiguchi S., Noda M., Miyagishi Y., Nishida S., Kodomari M., Chihara T. (2003) J. Mol. Catal. A 195: 159
T. Tanaka , S. Takenaka, T. Funabiki, and S. Yoshida (1994). Chem. Lett. 809
Bortolini O., Conte V., Di Furia F., Modena G. (1985) Nouv. J. Chim. 9: 147
Faraj M., Bregeault J. M., Martin J., Martin C. (1984) J. Organomet. Chem. 276: C23
Kamiguchi S., Iketani S., Kodomari M., Chihara T. (2004) J. Cluster Sci. 15: 19
Kamiguchi S., Nishida S., Kodomari M., Chihara T. (2005) J. Cluster Sci. 16: 77
Y. Saito , H. Niiyama, and E. Echigoya (1984). Nippon Kagaku Kaishi 391
T. Nishiguchi and C. Kamio (1989). J. Chem. Soc. Perkin Trans. 1 707
Halasz I., Vinek H., Thomke K., Noller H. (1985) Z. Phys. Chem. (München) 144: 157
Yamaguchi T., Tanabe K. (1974) Bull. Chem. Soc. Jpn. 47: 424
Schäfer H., Plautz H. (1972) Z. Anorg. Allg. Chem. 389: 57
Guggenberger L. J., Sleight A. W. (1969) Inorg. Chem. 8: 2041
McCarley R. E., Brown T. M. (1964) Inorg. Chem. 3: 1232
Kamiguchi S., Mori T., Watanabe M., Suzuki A., Kodomari M., Nomura M., Iwasawa Y., Chihara T. (2006) J. Mol. Catal. A 253: 176
P. M. Boorman and B. P. Straughan (1966). J. Chem. Soc. A 1514
Dorman W. C., McCarley R. E. (1974). Inorg. Chem. 13: 491
Schäfer H., Bauer D. (1965) Z. Anorg. Allg. Chem. 340: 62
Schoonover J. R., Zietlow T. C., Clark D. L., Heppert J. A., Chisholm M. H., Gray H. B., Sattelberger A. P., Woodruff W. H. (1996) Inorg. Chem. 35: 6606
Struss A. W., Corbett J. D. (1978) Inorg. Chem. 17: 965
Imoto H., Corbett J. D., Cisar A. (1981) Inorg. Chem. 20: 145
Matsuzaki R., Saeki Y. (1972) Nippon Kagaku Kaishi 8: 1226
Brosset C. (1950) Arkiv Kemi 1: 353