Thermal Activation of Molecular Tungsten Halide Clusters with the Retention of an Octahedral Metal Framework and the Catalytic Dehydration of Alcohols to Olefins as a Solid Acid Catalyst

Journal of Cluster Science - Tập 18 - Trang 414-430 - 2006
Satoshi Kamiguchi1, Sayoko Nagashima1, Kin-ichi Komori2, Mitsuo Kodomari2, Teiji Chihara1
1The Institute of Physical and Chemical Research (RIKEN), Wako, Japan
2Department of Applied Chemistry, Shibaura Institute of Technology, Tokyo, Japan

Tóm tắt

When the molecular tungsten halide cluster (H3O)2[(W6Cl8)Cl6]·6H2O, with an octahedral metal framework, is heated to 50 and 150 °C in flowing helium gas, it changes into (H3O)2[(W6Cl8)Cl6] and [(W6Cl8)Cl4(H2O)2], respectively. Activation at 250 °C yields a poorly crystallized solid state cluster, [W6Cl8]Cl2Cl4/2, which exhibits catalytic activity for the dehydration of ethanol to yield ethylene and a small amount of ethyl ether and acetal. The activity is attributed to the Brønsted acidity of the hydroxo ligand that is produced by elimination of hydrogen chloride from the chloro and aqua ligands. The catalytic activity increases with increasing temperature, and reaches a maximum at 300 °C. The catalytic activity then disappears above 350 °C, at which temperature the crystallinity of the cluster improves and the active sites are included in the crystal. In the case of primary alcohols, the reactivity decreases with increasing length of the carbon chain, and secondary alcohols are more reactive than the corresponding primary alcohols. Halide clusters of niobium, molybdenum, and tantalum having the same metal framework are also active catalysts for these reactions.

Tài liệu tham khảo

Mingos D. M. P., Wales D. J. (1990) Introduction to Cluster Chemistry Prentice-Hall, New Jersey Lee S. C., Holm R. H.. (1990) Angew. Chem. Int. Ed. Engl. 29: 840 Corbett J. D. (1992) NATO ASI ser., Ser. C, Math. Phys. Sci. 382: 27 Prokopuk N., Shriver D. F. (1999) Adv. Inorg. Chem. 46: 1 Corbett J. D. (1992) Pure Appl. Chem. 64: 1395 Corbett J. D. (1990) Pure Appl. Chem. 62: 103 T. Chihara and S. Kamiguchi (2002). Chem. Lett. 70 Kamiguchi S., Watanabe M., Kondo K., Kodomari M., Chihara T. (2003) J. Mol. Catal. A 203: 153 Kamiguchi S., Nakamura A., Suzuki A., Kodomari M., Nomura M., Iwasawa Y., Chihara T. (2005) J. Catal. 230: 204 Kamiguchi S., Kondo K., Kodomari M., Chihara T. (2004) J. Catal. 223: 54 Kamiguchi S., Nishida S., Kurokawa H., Miura H., Chihara T. (2005) J. Mol. Catal. A 226: 1 M. E. Winfield, in P. H. Emmett (ed.), Catalysis (Reinhold, New York, 1960) VII, pp. 93―182 Pines H., Manassen J. (1966) Adv. Catal. 16: 49 Park C., Keane M. A. (2001) J. Mol. Catal. A 166: 303 T. Okuhara , A. Kasai, N. Hayakawa, M. Misono, and Y. Yoneda (1981). Chem. Lett. 391 J. Haber, , K. Pamin, L. Matachowski, B. Napruszewska, and J. Poltowicz (2002). J. Catal. 207, 296 Saito Y., Cook P. N., Niiyama H., Echigoya E. (1985) J. Catal. 95: 49 Pizzio L. R., Vazquez P. G., Caceres C. V., Blanco M. N., Alesso E. N., Erlich M. I., Torviso R., Finkielsztein L., Lantano B., Moltrasio G. Y., Aguirre J. M. (2004) Catal. Lett. 93: 67 Haber J., Pamin K., Matachowski L., Mucha D. (2003) Appl. Catal. A 256: 141 Lundeen A. J., Hoozer R. V. (1967) J. Org. Chem. 32: 3386 Lundeen A. J., Hoozer R. V. (1963) J. Am. Chem. Soc. 85: 2180 Kamiguchi S., Chihara T. (2003) Catal. Lett. 85: 97 Koknat F. W., Parson J. A., Vongvusharintra A. (1974) Inorg. Chem. 13: 1699 Nannelli P., Block B. P. (1970) Inorg. Synth. 12: 170 Kolesnichenko V., Messerle L. (1998) Inorg. Chem. 37: 3660 Ehrlich G. M., Rauch P. E., Disalvo F. J. (1995) Inorg. Synth. 30: 1 Kamiguchi S., Noda M., Miyagishi Y., Nishida S., Kodomari M., Chihara T. (2003) J. Mol. Catal. A 195: 159 T. Tanaka , S. Takenaka, T. Funabiki, and S. Yoshida (1994). Chem. Lett. 809 Bortolini O., Conte V., Di Furia F., Modena G. (1985) Nouv. J. Chim. 9: 147 Faraj M., Bregeault J. M., Martin J., Martin C. (1984) J. Organomet. Chem. 276: C23 Kamiguchi S., Iketani S., Kodomari M., Chihara T. (2004) J. Cluster Sci. 15: 19 Kamiguchi S., Nishida S., Kodomari M., Chihara T. (2005) J. Cluster Sci. 16: 77 Y. Saito , H. Niiyama, and E. Echigoya (1984). Nippon Kagaku Kaishi 391 T. Nishiguchi and C. Kamio (1989). J. Chem. Soc. Perkin Trans. 1 707 Halasz I., Vinek H., Thomke K., Noller H. (1985) Z. Phys. Chem. (München) 144: 157 Yamaguchi T., Tanabe K. (1974) Bull. Chem. Soc. Jpn. 47: 424 Schäfer H., Plautz H. (1972) Z. Anorg. Allg. Chem. 389: 57 Guggenberger L. J., Sleight A. W. (1969) Inorg. Chem. 8: 2041 McCarley R. E., Brown T. M. (1964) Inorg. Chem. 3: 1232 Kamiguchi S., Mori T., Watanabe M., Suzuki A., Kodomari M., Nomura M., Iwasawa Y., Chihara T. (2006) J. Mol. Catal. A 253: 176 P. M. Boorman and B. P. Straughan (1966). J. Chem. Soc. A 1514 Dorman W. C., McCarley R. E. (1974). Inorg. Chem. 13: 491 Schäfer H., Bauer D. (1965) Z. Anorg. Allg. Chem. 340: 62 Schoonover J. R., Zietlow T. C., Clark D. L., Heppert J. A., Chisholm M. H., Gray H. B., Sattelberger A. P., Woodruff W. H. (1996) Inorg. Chem. 35: 6606 Struss A. W., Corbett J. D. (1978) Inorg. Chem. 17: 965 Imoto H., Corbett J. D., Cisar A. (1981) Inorg. Chem. 20: 145 Matsuzaki R., Saeki Y. (1972) Nippon Kagaku Kaishi 8: 1226 Brosset C. (1950) Arkiv Kemi 1: 353