There is no compact metrizable space containing all continua as unique components

Topology and its Applications - Tập 299 - Trang 107742 - 2021
Benjamin Vejnar1
1Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Czechia

Tài liệu tham khảo

Awartani, 1993, An uncountable collection of mutually incomparable chainable continua, Proc. Am. Math. Soc., 118, 239, 10.1090/S0002-9939-1993-1092914-3 Bartoš, 2019, Compactifiable classes of compacta, Topol. Appl., 266, 10.1016/j.topol.2019.106836 Bartoš, 2016, Incomparable compactifications of the ray with Peano continuum as remainder, Topol. Appl., 208, 93, 10.1016/j.topol.2016.05.008 Camerlo, 2005, Classification problems in continuum theory, Trans. Am. Math. Soc., 357, 4301, 10.1090/S0002-9947-05-03956-5 Foreman, 2018, What is a Borel reduction?, Not. Am. Math. Soc., 65, 1263 Gao, 2009, Invariant Descriptive Set Theory, vol. 293 Illanes, 2015, Extending surjections defined on remainders of metric compactifications of [0,∞), Houst. J. Math., 41, 1325 Kechris, 1995, Classical Descriptive Set Theory, vol. 156 Krupski Minc, 2016, 2ℵ0 ways of approaching a continuum with [1,∞), Topol. Appl., 202, 47, 10.1016/j.topol.2016.01.001 Nadler, 1992, Continuum Theory, vol. 158 Pyrih, 2012, Waraszkiewicz spirals revisited, Fundam. Math., 219, 97, 10.4064/fm219-2-1 Zenon, 1932, Une famille indénombrable de continus plans dont aucun n'est l'image d'un autre, Fundam. Math., 18, 118