There is no compact metrizable space containing all continua as unique components
Tài liệu tham khảo
Awartani, 1993, An uncountable collection of mutually incomparable chainable continua, Proc. Am. Math. Soc., 118, 239, 10.1090/S0002-9939-1993-1092914-3
Bartoš, 2019, Compactifiable classes of compacta, Topol. Appl., 266, 10.1016/j.topol.2019.106836
Bartoš, 2016, Incomparable compactifications of the ray with Peano continuum as remainder, Topol. Appl., 208, 93, 10.1016/j.topol.2016.05.008
Camerlo, 2005, Classification problems in continuum theory, Trans. Am. Math. Soc., 357, 4301, 10.1090/S0002-9947-05-03956-5
Foreman, 2018, What is a Borel reduction?, Not. Am. Math. Soc., 65, 1263
Gao, 2009, Invariant Descriptive Set Theory, vol. 293
Illanes, 2015, Extending surjections defined on remainders of metric compactifications of [0,∞), Houst. J. Math., 41, 1325
Kechris, 1995, Classical Descriptive Set Theory, vol. 156
Krupski
Minc, 2016, 2ℵ0 ways of approaching a continuum with [1,∞), Topol. Appl., 202, 47, 10.1016/j.topol.2016.01.001
Nadler, 1992, Continuum Theory, vol. 158
Pyrih, 2012, Waraszkiewicz spirals revisited, Fundam. Math., 219, 97, 10.4064/fm219-2-1
Zenon, 1932, Une famille indénombrable de continus plans dont aucun n'est l'image d'un autre, Fundam. Math., 18, 118