Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các liệu pháp dựa trên nanoparticle cho việc truyền thuốc vào mắt
Tóm tắt
Việc truyền thuốc vào mắt, đặc biệt là đến võng mạc, là một thách thức kỹ thuật cần được giải quyết và đại diện cho một lĩnh vực y học quan trọng hiện nay. Các bệnh ở đoạn sau của mắt là nguyên nhân chính gây suy giảm thị lực trên toàn cầu. Thoái hóa điểm vàng liên quan đến tuổi tác, bệnh glaucom và bệnh võng mạc do tiểu đường là những nguyên nhân chính gây mù lòa. Để đạt được khả năng truyền thuốc hiệu quả và thời gian giữ thuốc lâu trong đoạn sau của mắt, các hệ thống truyền thuốc mới dựa trên nanoparticle đã được phát triển trong những năm qua. Hiện nay, liposome là các nanoparticle được sử dụng nhiều nhất cho việc truyền thuốc vào mắt và gần đây, một loạt các nanoparticle đa dạng tiếp tục xuất hiện với những đặc điểm đặc biệt khiến chúng trở thành những ứng viên lý tưởng cho việc truyền thuốc vào mắt.
Từ khóa
#truyền thuốc vào mắt #nanoparticle #liposome #thoái hóa điểm vàng #bệnh glaucom #bệnh võng mạc do tiểu đườngTài liệu tham khảo
Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96:614–8.
Flaxman SR, Bourne RRA, Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5:e1221–e12341234.
Yau JW, Rogers SL, Kawasaki R, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35:556–64.
Tan GS, Cheung N, Simó R, Cheung GC, Wong TY. Diabetic macular oedema. Lancet Diabetes Endocrinol. 2017;5:143–55.
Grzybowski A, Told R, Sacu S, et al. 2018 Update on intravitreal injections: euretina expert consensus recommendations. Ophthalmologica. 2018;239:181–93.
Lai S, Wei Y, Wu Q, et al. Liposomes for effective drug delivery to the ocular posterior chamber. J Nanobiotechnol. 2019;17:64.
Blazaki S, Pachis K, Tzatzarakis M, Tsilimbaris M, Antimisiaris SG. Novel liposome aggregate platform (LPA) system for sustained retention of drugs in the posterior ocular segment following intravitreal injection. Int J Pharm. 2019;576:118987.
Petri AS, Boysen K, Cehofski LJ, et al. Intravitreal Injections with vascular endothelial growth factor inhibitors: a practical approach. Ophthalmol Ther. 2020;9:191–203.
Azad R, Chandra P, Gupta R. The economic implications of the use of anti-vascular endothelial growth factor drugs in age-related macular degeneration. Indian J ophthalmol. 2007;55:441.
Subhi Y, Sorensen TL. Neovascular age-related macular degeneration in the very old (≥ 90 years): epidemiology, adherence to treatment, and comparison of efficacy. J Ophthalmol. 2017;2017:7194927.
Liu S, Jones L, Gu FX. Nanomaterials for ocular drug delivery. Macromol Biosci. 2012;12:608–20.
Agrahari V, Mandal A, Agrahari V, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6:735–54.
Santos A, Altamirano JC, Navarro-Partida J, González-De la Rosa A, Hsiao JH. Breaking down the barrier: topical liposomes as nanocarriers for drug delivery into the posterior segment of the eyeball. In: Tayagi RV, Garg N, Shukla R, Singh Bisen P, editors. Role of novel drug delivery vehicles in nanobiomedicine. IntechOpen; 2019. https://doi.org/10.5772/intechopen.86601.
Holmes D. Reconstructing the retina. Nature. 2018;561:S2–S3.
Frank RN, Glybina I. Macular oedema. In: Dartt D, Besharse JC, Dana MR, editors. Encyclopedia of the eye, vol. 3. Oxford: Elsevier; 2010. p. 1–12.
Moisseiev E, Loewenstein A. Drug delivery to the posterior segment of the eye. In: Coscas G, editor. Macular edema, vol. 58, 2nd edn. Dev Ophthalmol. Basel, Karger; 2017. p. 87–101
Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B. 2017;7:281–91.
Gu Y, Xu C, Wang Y, Zhou X, Fang L, Cao F. Multifunctional nanocomposites based on liposomes and layered double hydroxides conjugated with glycylsarcosine for efficient topical drug delivery to the posterior segment of the eye. Mol Pharm. 2019;16:2845–57.
Kamaleddin MA. Nano-ophthalmology: applications and considerations. Nanmedicine. 2017;13(4):1459–72.
Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int J Nanomedicine. 2019;14:1937–52.
Souto EB, Dias-Ferreira J, López-Machado A, et al. Advanced formulation approaches for ocular drug delivery: state-of-the-art and recent patents. Pharmaceutics. 2019;11:E460.
Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterials-based drug delivery vehicles. Signal Transduct Target Ther. 2019;4:33.
Xu Q, Kambhampati SP, Kannan RM. Nanotechnology approaches for ocular drug delivery. Middle East Afr J Ophthalmol. 2013;20(1):26–37.
Bhattacharjee A, Das PJ, Adhikari P, et al. Novel drug delivery systems for ocular therapy: with special references to liposomal ocular delivery. Eur J Ophthalmol. 2019;29(1):113–26.
Lorenzo-Veiga B, Sigurdsson HH, Loftsson T. Nepafenac-loaded cyclodextrin/polymer nanoaggregates: a new approach to eye drop formulation. Materials (Basel). 2019;12:E229.
Liu CH, Lee GW, Wu WC, Wang CC. Encapsulating curcumin in ethylene diamine-β-cyclodextrin nanoparticle improves topical cornea delivery. Colloids Surf B Biointerfaces. 2019;186:110726.
Rowe-Rendleman CL, Durazo SA, Kompella UB, et al. Drug and gene delivery to the back of the eye: from bench to bedside. Investig Ophthalmol Vis Sci. 2014;55:2714–30.
Trinh HM, Cholkar K, Joseph M, Yang X, Mitra AK. Clear, aqueous topical drop of triamcinolone acetonide. AAPS PharmaSciTech. 2017;18(7):2466–78.
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):E12.
van Rooijen N, van Nieuwmegen R. Liposomes in immunology: multilamellar phosphatidylcholine liposomes as a simple, biodegradable and harmless adjuvant without any immunogenic activity of its own. Immunol Commun. 1980;9:243–56.
Gupta SK, Velpandian T, Dhingra N, Jaiswal J. Intravitreal pharmacokinetics of plain and liposome-entrapped fluconazole in rabbit eyes. J Ocul Pharmacol Ther. 2000;16(6):511–8.
Zhang R, He R, Qian JA, Guo J, Xue K, Yuan YF. Treatment of experimental autoimmune uveoretinitis with intravitreal injection of tacrolimus (FK506) encapsulated in liposomes. Investig Ophthalmol Vis Sci. 2010;51:3575–82.
Cannon JP, Fiscella R, Pattharachayakul S, et al. Comparative toxicity and concentrations of intravitreal amphotericin B formulations in a rabbit model. Investig Ophthalmol Vis Sci. 2003;44:2112–7.
Claro C, Ruiz R, Cordero E, et al. Determination and pharmacokinetic profile of liposomal foscarnet in rabbit ocular tissues after intravitreal administration. Exp Eye Res. 2009;88:528–34.
Zeng S, Hu C, Wei H, et al. Intravitreal pharmacokinetics of liposome-encapsulated amikacin in a rabbit model. Ophthalmology. 1993;100:1640–4.
Altamirano-Vallejo JC, Navarro-Partida J, Gonzalez-De la Rosa A, et al. Characterization and pharmacokinetics of triamcinolone acetonide-loaded liposomes topical formulations for vitreoretinal drug delivery. J Ocul Pharmacol Ther. 2018;34:416–25.
Gonzalez-De la Rosa A, Navarro-Partida J, Altamirano-Vallejo JC, et al. Novel triamcinolone acetonide-loaded liposomes topical formulation for the treatment of cystoid macular edema after cataract surgery: a pilot study. J Ocul Pharmacol Ther. 2019;35:106–15.
Gonzalez-De la Rosa A, Navarro-Partida J, Altamirano-Vallejo JC, et al. Novel triamcinolone acetonide-loaded liposomes topical formulation improves contrast sensitivity outcome after femtosecond laser-assisted cataract surgery. J Ocul Pharmacol Ther. 2019;35:512–21.
Khalil M, Hashmi U, Riaz R, Rukh AS. Chitosan coated liposomes (CCL) containing triamcinolone acetonide for sustained delivery: a potential topical treatment for posterior segment diseases. Int J Biol Macromol. 2020;143:483–91.
Li J, Cheng T, Tian Q, et al. A more efficient ocular delivery system of triamcinolone acetonide as eye drop to the posterior segment of the eye. Drug Deliv. 2019;26:188–98.
Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33:2373–87.
Clinicaltrials.gov. https://clinicaltrials.gov/. Accessed 20 Apr 2020.
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure preparation and application. Adv Pharm Bull. 2015;5:305–13.
Abrishami M, Abrishami M, Mahmoudi A, Mosallaei N, Vakili ARM, Malaekeh-Nikouei B. Solid lipid nanoparticles improve the diclofenac availability in vitreous after intraocular injection. J Drug Deliv. 2016;2016:1368481.
Singh M, Guzman-Aranguez A, Hussain A, Srinivas CS, Kaur IP. Solid lipid nanoparticles for ocular delivery of isoniazid: evaluation, proof of concept and in vivo safety & kinetics. Nanomedicine (Lond). 2019;14:465–91.
Kashiwagi K, Ito K, Haniuda H, Ohtsubo S, Takeoka S. Development of latanoprost-loaded biodegradable nanosheet as a new drug delivery system for glaucoma. Investig Ophthalmol Vis Sci. 2013;54:5629–37.
Wang L, Jiang YY, Lin N. Promise of latanoprost and timolol loaded combinatorial nanosheet for therapeutic applications in glaucoma. J King Saud Univ Sci. 2020;32:1042–7.
Silva B, Marto J, Braz BS, Delgado E, Almeida AJ, Goncalves L. New nanoparticles for topical ocular delivery of erythropoietin. Int J Pharm. 2020;576:119020.
Hamcerencu M, Desbrieres J, Popa M. Thermo-sensitive gellan maleate/N-isopropylacrylamide hydrogels: initial “in vitro” and “in vivo” evaluation as ocular inserts. Polym Bull. 2020;77:741.
Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J Control Release. 2017;248:96–116.
Xu X, Sun L, Zhou L, Cheng Y, Cao F. Functional chitosan oligosaccharide nanomicelles for topical ocular drug delivery of dexamethasone. Carbohydr Polym. 2020;227:115356.
Yu A, Shi H, Liu H, et al. Mucoadhesive dexamethasone-glycol chitosan nanoparticles for ophthalmic drug delivery. Int J Pharm. 2020;575:118943.
Sai N, Dong X, Huang P, et al. A novel gel-forming solution based on PEG-DSPE/Solutol HS 15 mixed micelles and gellan gum for ophthalmic delivery of curcumin. Molecules. 2019;25:E81.
Song K, Xin M, Yu H. Novel ultra-small micelles based on rebaudioside A: a potential nanoplatform for ocular drug delivery. Int J Pharm. 2018;552:265–76.
Song K, Xin M, Zhang F, Xie W, Sun M, Wu X. Novel ultrasmall nanomicelles based on rebaudioside A: a potential nanoplatform for the ocular delivery of pterostilbene. Int J Pharm. 2020;577:119035.
Li M, Lan J, Li X, et al. Novel ultra-small micelles based on ginsenoside Rb1: a potential nanoplataform for ocular drug delivery. Drug Deliv. 2019;26:481–9.
Göttel B, de Souza e Silva JM, de Oliveira CS, et al. Electrospun nanofibers—a promising solid in situ gelling alternative for ocular drug delivery. Eur J Pharm Biopharm. 2020;146:125–32.
Wang Y, Liu CH, Ji T, et al. Intravenous treatment of choroidal neovascularization by photo-targeted nanoparticles. Nat Commun. 2019;10:804.
Mazet R, Choisnard L, Levilly D, Wouessidjewe D, Géze A. Investigation of combined cyclodextrin and hydrogel formulation for ocular delivery of dexamethasone acetate by means of experimental designs. Pharmaceutics. 2018;10:E249.
Jóhannesson G, Moya-Ortega MD, Ásgrímsdóttir GM, et al. Kinetics of γ-cyclodextrin nanoparticles suspension eye drops in tear fluid. Acta Ophthalmol. 2014;92:550–6.
Ohira A, Hara K, Jóhannesson G, et al. Topical dexamethasone γ-cyclodextrin nanoparticle eye drop increase visual acuity and decrease macular thickness in diabetic macular oedema. Acto Ophthalmol. 2015;93:610–5.