Therapeutic potential of targeting sphingosine kinases and sphingosine 1-phosphate in hematological malignancies
Tóm tắt
Từ khóa
Tài liệu tham khảo
Jabbour E, Kantarjian H, Cortes J . Use of second- and third-generation tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia: an evolving treatment paradigm. Clin Lymphoma Myeloma Leuk 2015; 15: 323–334.
Pyne S, Chapman J, Steele L, Pyne NJ . Sphingomyelin-derived lipids differentially regulate the extracellular signal-regulated kinase 2 (ERK-2) and c-Jun N-terminal kinase (JNK) signal cascades in airway smooth muscle. Eur J Biochem 1996; 237: 819–826.
Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 1996; 381: 800–803.
Wallington-Beddoe CT, Bradstock KF, Bendall LJ . Oncogenic properties of sphingosine kinases in haematological malignancies. Br J Haematol 2013; 161: 623–638.
Pyne S, Adams DR, Pyne NJ . Sphingosine 1-phosphate and sphingosine kinases in health and disease: recent advances. Prog Lipid Res 2016; 62: 93–106.
Nishi T, Kobayashi N, Hisano Y, Kawahara A, Yamaguchi A . Molecular and physiological functions of sphingosine 1-phosphate transporters. Biochim Biophys Acta 2014; 1841: 759–765.
Xu Y, Xiao YJ, Baudhuin LM, Schwartz BM . The role and clinical applications of bioactive lysolipids in ovarian cancer. J Soc Gynecol Investig 2001; 8: 1–13.
Sutphen R, Xu Y, Wilbanks GD, Fiorica J, Grendys Jr EC, LaPolla JP et al. Lysophospholipids are potential biomarkers of ovarian cancer. Cancer Epidemiol Biomarkers Prev 2004; 13: 1185–1191.
Long JS, Fujiwara Y, Edwards J, Tannahill CL, Tigyi G, Pyne S et al. Sphingosine 1-phosphate receptor 4 uses HER2 (ERBB2) to regulate extracellular signal regulated kinase-1/2 in MDA-MB-453 breast cancer cells. J Biol Chem 2010; 285: 35957–35966.
Shida D, Fang X, Kordula T, Takabe K, Lepine S, Alvarez SE et al. Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Res 2008; 68: 6569–6577.
Pyne NJ, Pyne S . Receptor tyrosine kinase-G-protein-coupled receptor signalling platforms: out of the shadow? Trends Pharmacol Sci 2011; 32: 443–450.
Long JS, Edwards J, Watson C, Tovey S, Mair KM, Schiff R et al. Sphingosine kinase 1 induces tolerance to human epidermal growth factor receptor 2 and prevents formation of a migratory phenotype in response to sphingosine 1-phosphate in estrogen receptor-positive breast cancer cells. Mol Cell Biol 2010; 30: 3827–3841.
Watson C, Long JS, Orange C, Tannahill CL, Mallon E, McGlynn LM et al. High expression of sphingosine 1-phosphate receptors, S1P1 and S1P3, sphingosine kinase 1, and extracellular signal-regulated kinase-1/2 is associated with development of tamoxifen resistance in estrogen receptor-positive breast cancer patients. Am J Pathol 2010; 177: 2205–2215.
Pitson SM . Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem Sci 2011; 36: 97–107.
Neubauer HA, Pitson SM . Roles, regulation and inhibitors of sphingosine kinase 2. FEBS J 2013; 280: 5317–5336.
Loveridge C, Tonelli F, Leclercq T, Lim KG, Long JS, Berdyshev E et al. The sphingosine kinase 1 inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole induces proteasomal degradation of sphingosine kinase 1 in mammalian cells. J Biol Chem 2010; 285: 38841–38852.
Pitson SM, Moretti PA, Zebol JR, Xia P, Gamble JR, Vadas MA et al. Expression of a catalytically inactive sphingosine kinase mutant blocks agonist-induced sphingosine kinase activation. A dominant-negative sphingosine kinase. J Biol Chem 2000; 275: 33945–33950.
Pitson SM, Moretti PA, Zebol JR, Lynn HE, Xia P, Vadas MA et al. Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J 2003; 22: 5491–5500.
Jarman KE, Moretti PA, Zebol JR, Pitson SM . Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. J Biol Chem 2010; 285: 483–492.
Barr RK, Lynn HE, Moretti PA, Khew-Goodall Y, Pitson SM . Deactivation of sphingosine kinase 1 by protein phosphatase 2 A. J Biol Chem 2008; 283: 34994–35002.
Takabe K, Paugh SW, Milstien S, Spiegel S . "Inside-out" signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev 2008; 60: 181–195.
Vadas M, Xia P, McCaughan G, Gamble J . The role of sphingosine kinase 1 in cancer: oncogene or non-oncogene addiction? Biochim Biophys Acta 2008; 1781: 442–447.
Sobue S, Nemoto S, Murakami M, Ito H, Kimura A, Gao S et al. Implications of sphingosine kinase 1 expression level for the cellular sphingolipid rheostat: relevance as a marker for daunorubicin sensitivity of leukemia cells. Int J Hematol 2008; 87: 266–275.
Bayerl MG, Bruggeman RD, Conroy EJ, Hengst JA, King TS, Jimenez M et al. Sphingosine kinase 1 protein and mRNA are overexpressed in non-Hodgkin lymphomas and are attractive targets for novel pharmacological interventions. Leuk Lymphoma 2008; 49: 948–954.
Zhang Y, Wang Y, Wan Z, Liu S, Cao Y, Zeng Z . Sphingosine kinase 1 and cancer: a systematic review and meta-analysis. PLoS One 2014; 9: e90362.
Paugh SW, Paugh BS, Rahmani M, Kapitonov D, Almenara JA, Kordula T et al. A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood 2008; 112: 1382–1391.
Datta A, Loo SY, Huang B, Wong L, Tan SS, Tan TZ et al. SPHK1 regulates proliferation and survival responses in triple-negative breast cancer. Oncotarget 2014; 5: 5920–5933.
Pitman MR, Powell JA, Coolen C, Moretti PA, Zebol JR, Pham DH et al. A selective ATP-competitive sphingosine kinase inhibitor demonstrates anti-cancer properties. Oncotarget 2015; 6: 7065–7083.
Lee JW, Ryu JY, Yoon G, Jeon HK, Cho YJ, Choi JJ et al. Sphingosine kinase 1 as a potential therapeutic target in epithelial ovarian cancer. Int J Cancer 2015; 137: 221–229.
Pchejetski D, Doumerc N, Golzio M, Naymark M, Teissie J, Kohama T et al. Chemosensitizing effects of sphingosine kinase-1 inhibition in prostate cancer cell and animal models. Mol Cancer Ther 2008; 7: 1836–1845.
Sauer L, Nunes J, Salunkhe V, Skalska L, Kohama T, Cuvillier O et al. Sphingosine kinase 1 inhibition sensitizes hormone-resistant prostate cancer to docetaxel. Int J Cancer 2009; 125: 2728–2736.
Pchejetski D, Bohler T, Brizuela L, Sauer L, Doumerc N, Golzio M et al. FTY720 (fingolimod) sensitizes prostate cancer cells to radiotherapy by inhibition of sphingosine kinase-1. Cancer Res 2010; 70: 8651–8661.
Guillermet-Guibert J, Davenne L, Pchejetski D, Saint-Laurent N, Brizuela L, Guilbeau-Frugier C et al. Targeting the sphingolipid metabolism to defeat pancreatic cancer cell resistance to the chemotherapeutic gemcitabine drug. Mol Cancer Ther 2009; 8: 809–820.
Sukocheva O, Wang L, Verrier E, Vadas MA, Xia P . Restoring endocrine response in breast cancer cells by inhibition of the sphingosine kinase-1 signaling pathway. Endocrinology 2009; 150: 4484–4492.
Hait NC, Bellamy A, Milstien S, Kordula T, Spiegel S . Sphingosine kinase type 2 activation by ERK-mediated phosphorylation. J Biol Chem 2007; 282: 12058–12065.
Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 2009; 325: 1254–1257.
Ding G, Sonoda H, Yu H, Kajimoto T, Goparaju SK, Jahangeer S et al. Protein kinase D-mediated phosphorylation and nuclear export of sphingosine kinase 2. J Biol Chem 2007; 282: 27493–27502.
Maceyka M, Sankala H, Hait NC, Le Stunff H, Liu H, Toman R et al. SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem 2005; 280: 37118–37129.
Liu H, Toman RE, Goparaju SK, Maceyka M, Nava VE, Sankala H et al. Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J Biol Chem 2003; 278: 40330–40336.
Chipuk JE, McStay GP, Bharti A, Kuwana T, Clarke CJ, Siskind LJ et al. Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 2012; 148: 988–1000.
Van Brocklyn JR, Jackson CA, Pearl DK, Kotur MS, Snyder PJ, Prior TW . Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. J Neuropathol Exp Neurol 2005; 64: 695–705.
Sankala HM, Hait NC, Paugh SW, Shida D, Lepine S, Elmore LW et al. Involvement of sphingosine kinase 2 in p53-independent induction of p21 by the chemotherapeutic drug doxorubicin. Cancer Res 2007; 67: 10466–10474.
Nemoto S, Nakamura M, Osawa Y, Kono S, Itoh Y, Okano Y et al. Sphingosine kinase isoforms regulate oxaliplatin sensitivity of human colon cancer cells through ceramide accumulation and Akt activation. J Biol Chem 2009; 284: 10422–10432.
Schnitzer SE, Weigert A, Zhou J, Brune B . Hypoxia enhances sphingosine kinase 2 activity and provokes sphingosine-1-phosphate-mediated chemoresistance in A549 lung cancer cells. Mol Cancer Res 2009; 7: 393–401.
Weigert A, Schiffmann S, Sekar D, Ley S, Menrad H, Werno C et al. Sphingosine kinase 2 deficient tumor xenografts show impaired growth and fail to polarize macrophages towards an anti-inflammatory phenotype. Int J Cancer 2009; 125: 2114–2121.
Beljanski V, Knaak C, Smith CD . A novel sphingosine kinase inhibitor induces autophagy in tumor cells. J Pharmacol Exp Ther 2010; 333: 454–464.
French KJ, Zhuang Y, Maines LW, Gao P, Wang W, Beljanski V et al. Pharmacology and antitumor activity of ABC294640, a selective inhibitor of sphingosine kinase-2. J Pharmacol Exp Ther 2010; 333: 129–139.
Beljanski V, Lewis CS, Smith CD . Antitumor activity of sphingosine kinase 2 inhibitor ABC294640 and sorafenib in hepatocellular carcinoma xenografts. Cancer Biol Ther 2011; 11: 524–534.
McNaughton M, Pitman M, Pitson SM, Pyne NJ, Pyne S . Proteasomal degradation of sphingosine kinase 1 and inhibition of dihydroceramide desaturase by the sphingosine kinase inhibitors, SKi or ABC294640, induces growth arrest in androgen-independent LNCaP-AI prostate cancer cells. Oncotarget 2016; 7: 16663–16675.
Venant H, Rahmaniyan M, Jones EE, Lu P, Lilly MB, Garrett-Mayer E et al. The sphingosine kinase 2 inhibitor ABC294640 reduces the growth of prostate cancer cells and results in accumulation of dihydroceramides in vitro and in vivo. Mol Cancer Ther 2015; 14: 2744–2752.
Schnute ME, McReynolds MD, Kasten T, Yates M, Jerome G, Rains JW et al. Modulation of cellular S1P levels with a novel, potent and specific inhibitor of sphingosine kinase-1. Biochem J 2012; 444: 79–88.
Xiang Y, Hirth B, Kane Jr JL, Liao J, Noson KD, Yee C et al. Discovery of novel sphingosine kinase-1 inhibitors. Part 2. Bioorg Med Chem Lett 2010; 20: 4550–4554.
Zhang Y, Berka V, Song A, Sun K, Wang W, Zhang W et al. Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression. J Clin Invest 2014; 124: 2750–2761.
Zhang F, Xia Y, Yan W, Zhang H, Zhou F, Zhao S et al. Sphingosine 1-phosphate signaling contributes to cardiac inflammation, dysfunction, and remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol 2016; 310: H250–H261.
Lim KG, Sun C, Bittman R, Pyne NJ, Pyne S . (R)-FTY720 methyl ether is a specific sphingosine kinase 2 inhibitor: effect on sphingosine kinase 2 expression in HEK 293 cells and actin rearrangement and survival of MCF-7 breast cancer cells. Cell Signal 2011; 23: 1590–1595.
Evangelisti C, Teti G, Chiarini F, Falconi M, Melchionda F, Pession A et al. Assessment of the effect of sphingosine kinase inhibitors on apoptosis,unfolded protein response and autophagy of T-cell acute lymphoblastic leukemia cells; indications for novel therapeutics. Oncotarget 2014; 5: 7886–7901.
Wang Z, Min X, Xiao SH, Johnstone S, Romanow W, Meininger D et al. Molecular basis of sphingosine kinase 1 substrate recognition and catalysis. Structure 2013; 21: 798–809.
Wang J, Knapp S, Pyne NJ, Pyne S, Elkins JM . Crystal structure of sphingosine kinase 1 with PF-543. ACS Med Chem Lett 2014; 5: 1329–1333.
Gustin DJ, Li Y, Brown ML, Min X, Schmitt MJ, Wanska M et al. Structure guided design of a series of sphingosine kinase (SphK) inhibitors. Bioorg Med Chem Lett 2013; 23: 4608–4616.
French KJ, Schrecengost RS, Lee BD, Zhuang Y, Smith SN, Eberly JL et al. Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 2003; 63: 5962–5969.
Rex K, Jeffries S, Brown ML, Carlson T, Coxon A, Fajardo F et al. Sphingosine kinase activity is not required for tumor cell viability. PLos One 2013; 8: e68328.
French KJ, Upson JJ, Keller SN, Zhuang Y, Yun JK, Smith CD . Antitumor activity of sphingosine kinase inhibitors. J Pharmacol Exp Ther 2006; 318: 596–603.
Zhang R, Shah MV, Yang J, Nyland SB, Liu X, Yun JK et al. Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad Sci USA 2008; 105: 16308–16313.
Ratajczak MZ, Lee H, Wysoczynski M, Wan W, Marlicz W, Laughlin MJ et al. Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 2010; 24: 976–985.
Ratajczak MZ, Kim CH, Abdel-Latif A, Schneider G, Kucia M, Morris AJ et al. A novel perspective on stem cell homing and mobilization: review on bioactive lipids as potent chemoattractants and cationic peptides as underappreciated modulators of responsiveness to SDF-1 gradients. Leukemia 2012; 26: 63–72.
Balabanov S, Braig M, Brummendorf TH . Current aspects in resistance against tyrosine kinase inhibitors in chronic myelogenous leukemia. Drug Discov Today Technol 2014; 11: 89–99.
Modugno M . New resistance mechanisms for small molecule kinase inhibitors of Abl kinase. Drug Discov Today Technol 2014; 11: 5–10.
Baran Y, Salas A, Senkal CE, Gunduz U, Bielawski J, Obeid LM et al. Alterations of ceramide/sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukemia cells. J Biol Chem 2007; 282: 10922–10934.
Weisberg E, Griffin JD . Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood 2000; 95: 3498–3505.
le Coutre P, Tassi E, Varella-Garcia M, Barni R, Mologni L, Cabrita G et al. Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood 2000; 95: 1758–1766.
Barnes DJ, Palaiologou D, Panousopoulou E, Schultheis B, Yong AS, Wong A et al. Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Cancer Res 2005; 65: 8912–8919.
Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.
Marfe G, Di Stefano C, Gambacurta A, Ottone T, Martini V, Abruzzese E et al. Sphingosine kinase 1 overexpression is regulated by signaling through PI3K, AKT2, and mTOR in imatinib-resistant chronic myeloid leukemia cells. Exp Hematol 2011; 39: e656.
Burchert A, Wang Y, Cai D, von Bubnoff N, Paschka P, Muller-Brusselbach S et al. Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia 2005; 19: 1774–1782.
Quentmeier H, Eberth S, Romani J, Zaborski M, Drexler HG . BCR-ABL1-independent PI3Kinase activation causing imatinib-resistance. J Hematol Oncol 2011; 4: 6.
Airiau K, Mahon FX, Josselin M, Jeanneteau M, Belloc F . PI3K/mTOR pathway inhibitors sensitize chronic myeloid leukemia stem cells to nilotinib and restore the response of progenitors to nilotinib in the presence of stem cell factor. Cell Death Dis 2013; 4: e827.
Ding J, Romani J, Zaborski M, MacLeod RA, Nagel S, Drexler HG et al. Inhibition of PI3K/mTOR overcomes nilotinib resistance in BCR-ABL1 positive leukemia cells through translational down-regulation of MDM2. PLoS One 2013; 8: e83510.
Okabe S, Tauchi T, Tanaka Y, Kitahara T, Kimura S, Maekawa T et al. Efficacy of the dual PI3K and mTOR inhibitor NVP-BEZ235 in combination with nilotinib against BCR-ABL-positive leukemia cells involves the ABL kinase domain mutation. Cancer Biol Ther 2014; 15: 207–215.
Li QF, Huang WR, Duan HF, Wang H, Wu CT, Wang LS . Sphingosine kinase-1 mediates BCR/ABL-induced upregulation of Mcl-1 in chronic myeloid leukemia cells. Oncogene 2007; 26: 7904–7908.
Salas A, Ponnusamy S, Senkal CE, Meyers-Needham M, Selvam SP, Saddoughi SA et al. Sphingosine kinase-1 and sphingosine 1-phosphate receptor 2 mediate Bcr-Abl1 stability and drug resistance by modulation of protein phosphatase 2 A. Blood 2011; 117: 5941–5952.
Ricci C, Onida F, Servida F, Radaelli F, Saporiti G, Todoerti K et al. in vitro anti-leukaemia activity of sphingosine kinase inhibitor. Br J Haematol 2009; 144: 350–357.
Bonhoure E, Lauret A, Barnes DJ, Martin C, Malavaud B, Kohama T et al. Sphingosine kinase-1 is a downstream regulator of imatinib-induced apoptosis in chronic myeloid leukemia cells. Leukemia 2008; 22: 971–979.
Li QF, Yan J, Zhang K, Yang YF, Xiao FJ, Wu CT et al. Bortezomib and sphingosine kinase inhibitor interact synergistically to induces apoptosis in BCR/ABl+ cells sensitive and resistant to STI571 through down-regulation Mcl-1. Biochem Biophys Res Commun 2011; 405: 31–36.
Rajala HL, Porkka K, Maciejewski JP, Loughran Jr TP, Mustjoki S . Uncovering the pathogenesis of large granular lymphocytic leukemia-novel STAT3 and STAT5b mutations. Ann Med 2014; 46: 114–122.
LeBlanc FR, Liu X, Hengst J, Fox T, Calvert V, Petricoin EF 3rd et al. Sphingosine kinase inhibitors decrease viability and induce cell death in natural killer-large granular lymphocyte leukemia. Cancer Biol Ther 2015; 16: 1830–1840.
Pui CH, Mullighan CG, Evans WE, Relling MV . Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood 2012; 12: 1165–1174.
Wallington-Beddoe CT, Powell JA, Tong D, Pitson SM, Bradstock KF, Bendall LJ . Sphingosine kinase 2 promotes acute lymphoblastic leukemia by enhancing MYC expression. Cancer Res 2014; 74: 2803–2815.
Cuvillier O, Levade T . Sphingosine 1-phosphate antagonizes apoptosis of human leukemia cells by inhibiting release of cytochrome c and Smac/DIABLO from mitochondria. Blood 2001; 98: 2828–2836.
Mikawa T, ME LL, Takaori-Kondo A, Inagaki N, Yokode M, Kondoh H . Dysregulated glycolysis as an oncogenic event. Cell Mol Life Sci 2015; 72: 1881–1892.
Shatrov VA, Lehmann V, Chouaib S . Sphingosine-1-phosphate mobilizes intracellular calcium and activates transcription factor NF-κB in U937 cells. Biochem Biophys Res Commun 1997; 234: 121–124.
Dick TE, Hengst JA, Fox TE, Colledge AL, Kale VP, Sung SS et al. The apoptotic mechanism of action of the sphingosine kinase 1 selective inhibitor SKI-178 in human acute myeloid leukemia cell lines. J Pharmacol Exp Ther 2015; 352: 494–508.
Yang L, Weng W, Sun ZX, Fu XJ, Ma J, Zhuang WF . SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo. Biochem Biophys Res Commun 2015; 460: 903–908.
Bonhoure E, Pchejetski D, Aouali N, Morjani H, Levade T, Kohama T et al. Overcoming MDR-associated chemoresistance in HL-60 acute myeloid leukemia cells by targeting sphingosine kinase-1. Leukemia 2006; 20: 95–102.
Cassaday RD, Goy A, Advani S, Chawla P, Nachankar R, Gandhi M et al. A phase II, single-arm, open-label, multicenter study to evaluate the efficacy and safety of P276-00, a cyclin-dependent kinase inhibitor, in patients with relapsed or refractory mantle cell lymphoma. Clin Lymphoma Myeloma Leuk 2015; 15: 392–397.
Chong EA, Ahmadi T, Aqui NA, Svoboda J, Nasta SD, Mato AR et al. Combination of lenalidomide and rituximab overcomes rituximab resistance in patients with indolent B-cell and mantle cell lymphomas. Clin Cancer Res 2015; 21: 1835–1842.
Chen Y, Wang M, Romaguera J . Current regimens and novel agents for mantle cell lymphoma. Br J Haematol 2014; 167: 3–18.
Jares P, Colomer D, Campo E . Molecular pathogenesis of mantle cell lymphoma. J Clin Invest 2012; 122: 3416–3423.
Nishimura H, Akiyama T, Monobe Y, Matsubara K, Igarashi Y, Abe M et al. Expression of sphingosine-1-phosphate receptor 1 in mantle cell lymphoma. Mod Pathol 2010; 23: 439–449.
Bigaud M, Guerini D, Billich A, Bassilana F, Brinkmann V . Second generation S1P pathway modulators: research strategies and clinical developments. Biochim Biophys Acta 2014; 1841: 745–758.
Liu Q, Alinari L, Chen CS, Yan F, Dalton JT, Lapalombella R et al. FTY720 shows promising in vitro and in vivo preclinical activity by downmodulating Cyclin D1 and phospho-Akt in mantle cell lymphoma. Clin Cancer Res 2010; 16: 3182–3192.
Tonelli F, Lim KG, Loveridge C, Long J, Pitson SM, Tigyi G et al. FTY720 and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1 and promote its proteasomal degradation in human pulmonary artery smooth muscle, breast cancer and androgen-independent prostate cancer cells. Cell Signal 2010; 22: 1536–1542.
Neviani P, Santhanam R, Oaks JJ, Eiring AM, Notari M, Blaser BW et al. FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest 2007; 117: 2408–2421.
Middle S, Coupland SE, Taktak A, Kidgell V, Slupsky JR, Pettitt AR et al. Immunohistochemical analysis indicates that the anatomical location of B-cell non-Hodgkin's lymphoma is determined by differentially expressed chemokine receptors, sphingosine-1-phosphate receptors and integrins. Exp Hematol Oncol 2015; 4: 10.
Pfeifer M, Zheng B, Erdmann T, Koeppen H, McCord R, Grau M et al. Anti-CD22 and anti-CD79B antibody drug conjugates are active in different molecular diffuse large B-cell lymphoma subtypes. Leukemia 2015; 29: 1578–1586.
Scuto A, Kujawski M, Kowolik C, Krymskaya L, Wang L, Weiss LM et al. STAT3 inhibition is a therapeutic strategy for ABC-like diffuse large B-cell lymphoma. Cancer Res 2011; 71: 3182–3188.
Lee H, Deng J, Kujawski M, Yang C, Liu Y, Herrmann A et al. STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nat Med 2010; 16: 1421–1428.
Liu Y, Deng J, Wang L, Lee H, Armstrong B, Scuto A et al. S1PR1 is an effective target to block STAT3 signaling in activated B cell-like diffuse large B-cell lymphoma. Blood 2012; 120: 1458–1465.
Paik JH, Nam SJ, Kim TM, Heo DS, Kim CW, Jeon YK . Overexpression of sphingosine-1-phosphate receptor 1 and phospho-signal transducer and activator of transcription 3 is associated with poor prognosis in rituximab-treated diffuse large B-cell lymphomas. BMC Cancer 2014; 14: 911.
Koresawa R, Yamazaki K, Oka D, Fujiwara H, Nishimura H, Akiyama T et al. Sphingosine-1-phosphate receptor 1 as a prognostic biomarker and therapeutic target for patients with primary testicular diffuse large B-cell lymphoma. Br J Haematol 2016; 174: 264–274.
Castillo JJ, Shum H, Lahijani M, Winer ES, Butera JN . Prognosis in primary effusion lymphoma is associated with the number of body cavities involved. Leuk Lymphoma 2012; 53: 2378–2382.
Okada S, Goto H, Yotsumoto M . Current status of treatment for primary effusion lymphoma. Intractable Rare Dis Res 2014; 3: 65–74.
Qin Z, Dai L, Trillo-Tinoco J, Senkal C, Wang W, Reske T et al. Targeting sphingosine kinase induces apoptosis and tumor regression for KSHV-associated primary effusion lymphoma. Mol Cancer Ther 2014; 13: 154–164.
Shain KH, Dalton WS, Tao J . The tumor microenvironment shapes hallmarks of mature B-cell malignancies. Oncogene 2015; 34: 4673–4682.
Yasui H, Hideshima T, Raje N, Roccaro AM, Shiraishi N, Kumar S et al. FTY720 induces apoptosis in multiple myeloma cells and overcomes drug resistance. Cancer Res 2005; 65: 7478–7484.
Yasui H, Hideshima T, Richardson PG, Anderson KC . Novel therapeutic strategies targeting growth factor signalling cascades in multiple myeloma. Br J Haematol 2006; 132: 385–397.
Tsukamoto S, Huang Y, Kumazoe M, Lesnick C, Yamada S, Ueda N et al. Sphingosine kinase-1 protects multiple myeloma from apoptosis driven by cancer-specific inhibition of RTKs. Mol Cancer Ther 2015; 14: 2303–2312.
Mori Y, Shimizu N, Dallas M, Niewolna M, Story B, Williams PJ et al. Anti-α4 integrin antibody suppresses the development of multiple myeloma and associated osteoclastic osteolysis. Blood 2004; 104: 2149–2154.
Sanz-Rodriguez F, Hidalgo A, Teixido J . Chemokine stromal cell-derived factor-1α modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 2001; 97: 346–351.
Garcia-Bernal D, Redondo-Munoz J, Dios-Esponera A, Chevre R, Bailon E, Garayoa M et al. Sphingosine-1-phosphate activates chemokine-promoted myeloma cell adhesion and migration involving α4β1 integrin function. J Pathol 2013; 229: 36–48.