Therapeutic potential of curcumin in major retinal pathologies

International Ophthalmology - Tập 39 - Trang 725-734 - 2018
Krishi V. Peddada1, A’sha Brown2, Vivek Verma3, Marcella Nebbioso4
1Department of Ophthalmology, Drexel University, Philadelphia, USA
2Emory Eye Center, Emory University, Atlanta, USA
3Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, USA
4Department of Sense Organs, Ocular Electrophysiology Center, Sapienza University of Rome, Rome, Italy

Tóm tắt

The retina is continually exposed to free radicals from its rich blood supply, numerous mitochondria, and photons of light which strike its surface. Most pathological processes that take place in the retina, such as inflammation, cell apoptosis, or angiogenesis, can hence involve free radicals directly or indirectly.  Since inflammatory and oxidative stress pathways underlie retinal pathology, compounds that address these factors are therefore natural choices for treatment. This review article summarizes and provides commentary on curcumin's therapeutic potential use in ophthalmology with principal focus on retinal dosorders. Curcumin (diferuloylmethane) is a compound of the Indian spice turmeric (Curcuma longa) that has been found to be efficacious in preventing and treating a number of inflammatory diseases and neoplastic processes. Curcumin exerts anti-inflammatory, anti-tumor, antioxidant, and VEGF inhibition properties through modulation of numerous biochemical mediators. This makes curcumin particularly effective in retinal disorders. Curcumin has found a role in slowing, and in some cases even reversing, age-related macular degeneration, diabetic retinopathy, retinitis pigmentosa, proliferative vitreoretinopathy, and retinal cancers. However, studies on curcumin’s efficacy have been limited mostly to animal studies. Moreover, the biomedical potential of curcumin is not easy to use, given its low solubility and oral bioavailability—more attention therefore has been given to nanoparticles and liposomes.

Tài liệu tham khảo

Shaban H, Richter C (2002) A2E and blue light in the retina: the paradigm of age-related macular degeneration. Biol Chem 383(3–4):537–545 Sparrow JR, Vollmer-Snarr HR, Zhou J, Jang YP, Jockusch S, Itagaki Y, Nakanishi K (2003) A2E-epoxides damage DNA in retinal pigment epithelial cells. Vitamin E and other antioxidants inhibit A2E-epoxide formation. J Biol Chem 278(20):18207–18213 Wu Y, Yanase E, Feng X, Siegel MM, Sparrow JR (2010) Structural characterization of bisretinoid A2E photocleavage products and implications for age-related macular degeneration. Proc Natl Acad Sci USA 107(16):7275–7280 Pescosolido N, Giannotti R, Plateroti AM, Pascarella A, Nebbioso M (2014) Curcumin: therapeutical potential in ophthalmology. Planta Med 80(4):249–254 Burugula B, Ganesh BS, Chintala SK (2011) Curcumin attenuates staurosporine-mediated death of retinal ganglion cells. Invest Ophthalmol Vis Sci 52(7):4263–4273 Pescosolido N, Barbato A, Pascarella A, Giannotti R, Genzano M, Nebbioso M (2014) Role of protease-inhibitors in ocular diseases. Molecules 19(12):20557–20569 Qi RF, Song ZW, Chi CW (2005) Structural features and molecular evolution of Bowman–Birk protease inhibitors and their potential application. Acta Biochim Biophys Sin (Shanghai) 37(5):283–292 Kolb H, Fernandez E, Nelson R (eds) (1995) Webvision: the organization of the retina and visual system. University of Utah Health Sciences Center, Salt Lake City Limoli PG, Vingolo EM, Morales MU, Nebbioso M, Limoli C (2014) Preliminary study on electrophysiological changes after cellular autograft in age-related macular degeneration. Medicine (Baltimore) 93(29):e355 Limoli PG, Limoli C, Vingolo EM, Scalinci SZ, Nebbioso M (2016) Cell surgery and growth factors in dry age-related macular degeneration: visual prognosis and morphological study. Oncotarget 7(30):46913–46923 Grassmann F, Fauser S, Weber BH (2015) The genetics of age-related macular degeneration (AMD)—novel targets for designing treatment options? Eur J Pharm Biopharm 95(Pt B):194–202 Whitmore SS, Sohn EH, Chirco KR, Drack AV, Stone EM, Tucker BA, Mullins RF (2015) Complement activation and choriocapillaris loss in early AMD: implications for pathophysiology and therapy. Prog Retin Eye Res 45:1–29 Adams MK, Simpson JA, Aung KZ, Makeyeva GA, Giles GG, English DR, Hopper J, Guymer RH, Baird PN, Robman LD (2011) Abdominal obesity and age-related macular degeneration. Am J Epidemiol 173(11):1246–1255 Dasari B, Prasanthi JR, Marwarha G, Singh BB, Ghribi O (2011) Cholesterol-enriched diet causes age-related macular degeneration-like pathology in rabbit retina. BMC Ophthalmol 11:22 Cougnard-Grégoire A, Delyfer MN, Korobelnik JF, Rougier MB, Malet F, Le Goff M, Dartigues JF, Colin J, Barberger-Gateau P, Delcourt C (2013) Long-term blood pressure and age-related macular degeneration: the ALIENOR study. Invest Ophthalmol Vis Sci 54(3):1905–1912 Marquioni-Ramella MD, Suburo AM (2015) Photo-damage, photo-protection and age-related macular degeneration. Photochem Photobiol Sci 14(9):1560–1577 Fischer T (2015) The age-related macular degeneration as a vascular disease/part of systemic vasculopathy: contributions to its pathogenesis. Orv Hetil 156(9):358–365 Zhu W, Wu Y, Meng YF, Wang JY, Xu M, Tao JJ, Lu J (2015) Effect of curcumin on aging retinal pigment epithelial cells. Drug Des Devel Ther 9:5337–5344 Howell JC, Chun E, Farrell AN, Hur EY, Caroti CM, Iuvone PM, Haque R (2013) Global microRNA expression profiling: curcumin (diferuloylmethane) alters oxidative stress-responsive microRNAs in human ARPE-19 cells. Mol Vis 19:544–560 Woo JM, Shin DY, Lee SJ, Joe Y, Zheng M, Yim JH, Callaway Z, Chung HT (2012) Curcumin protects retinal pigment epithelial cells against oxidative stress via induction of heme oxygenase-1 expression and reduction of reactive oxygen. Mol Vis 18:901–908 Li Y, Zou X, Cao K, Xu J, Yue T, Dai F, Zhou B, Lu W, Feng Z, Liu J (2013) Curcumin analog 1, 5-bis(2-trifluoromethylphenyl)-1, 4-pentadien-3-one exhibits enhanced ability on Nrf2 activation and protection against acrolein-induced ARPE-19 cell toxicity. Toxicol Appl Pharmacol 272(3):726–735 Mandal MN, Patlolla JM, Zheng L, Agbaga MP, Tran JT, Wicker L, Kasus-Jacobi A, Elliott MH, Rao CV, Anderson RE (2009) Curcumin protects retinal cells from light-and oxidant stress-induced cell death. Free Radic Biol Med 46(5):672–679 Nebbioso M, Federici M, Rusciano D, Evangelista M, Pescosolido N (2012) Oxidative stress in preretinopathic diabetes subjects and antioxidants. Diabetes Technol Ther 14:257–263 Yu Y, Chen H, Su SB (2015) Neuroinflammatory responses in diabetic retinopathy. J Neuroinflamm 12:141 Barber AJ (2015) Diabetic retinopathy: recent advances towards understanding neurodegeneration and vision loss. Sci China Life Sci 58(6):541–549 Wan TT, Li XF, Sun YM, Li YB, Su Y (2015) Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy. Biomed Pharmacother 74:145–147 Wu Y, Tang L, Chen B (2014) Oxidative stress: implications for the development of diabetic retinopathy and antioxidant therapeutic perspectives. Oxid Med Cell Longev 2014:752387 Gupta SK, Kumar B, Nag TC, Agrawal SS, Agrawal R, Agrawal P, Saxena R, Srivastava S (2011) Curcumin prevents experimental diabetic retinopathy in rats through its hypoglycemic, antioxidant, and anti-inflammatory mechanisms. J Ocul Pharmacol Ther 27(2):123–130 Wang C, George B, Chen S, Feng B, Li X, Chakrabarti S (2012) Genotoxic stress and activation of novel DNA repair enzymes in human endothelial cells and in the retinas and kidneys of streptozotocin diabetic rats. Diabetes Metab Res Rev 28(4):329–337 Khimmaktong W, Petpiboolthai H, Sriya P, Anupunpisit V (2014) Effects of curcumin on restoration and improvement of microvasculature characteristic in diabetic rat’s choroid of eye. J Med Assoc Thail 97(Suppl 2):S39–S46 Mrudula T, Suryanarayana P, Srinivas PN, Reddy GB (2007) Effect of curcumin on hyperglycemia-induced vascular endothelial growth factor expression in streptozotocin-induced diabetic rat retina. Biochem Biophys Res Commun 361(2):528–532 Tam LC, Kiang AS, Campbell M, Keaney J, Farrar GJ, Humphries MM, Kenna PF, Humphries P (2012) Protein misfolding and potential therapeutic treatments in inherited retinopathies. Adv Exp Med Biol 723:567–572 Shintani K, Shechtman DL, Gurwood AS (2009) Review and update: current treatment trends for patients with retinitis pigmentosa. Optometry 80(7):384–401 Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368(9549):1795–1809 Cottet S, Schorderet DF (2009) Mechanisms of apoptosis in retinitis pigmentosa. Curr Mol Med 9(3):375–383 Emoto Y, Yoshizawa K, Uehara N, Kinoshita Y, Yuri T, Shikata N, Tsubura A (2013) Curcumin suppresses N-methyl-N-nitrosourea-induced photoreceptor apoptosis in Sprague–Dawley rats. In Vivo 27(5):583–590 Vasireddy V, Chavali VR, Joseph VT, Kadam R, Lin JH, Jamison JA, Kompella UB, Reddy GB, Ayyagari R (2011) Rescue of photoreceptor degeneration by curcumin in transgenic rats with P23H rhodopsin mutation. PLoS ONE 6(6):e21193 Kwon OW, Song JH, Roh MI (2016) Retinal detachment and proliferative vitreoretinopathy. Dev Ophthalmol 55:154–162 Tikhonovich MV, Iojleva EJ, Gavrilova SA (2015) The role of inflammation in the development of proliferative vitreoretinopathy. Klin Med (Mosk) 93(7):14–20 Artem’eva OV, Samoilov AN, Zhernakov SV (2014) Proliferative vitreoretinopathy: modern view on etiology and pathogenesis. Vestn Oftalmol 130(3):67–71 Sun Y, You ZP (2014) Curcumin inhibits human retinal pigment epithelial cell proliferation. Int J Mol Med 34(4):1013–1019 Gong L, Jiang D, Zhu X, Guo L (2004) Curcumin inhibits the proliferation of cultured human fetal retinal pigment epithelium cells. Yan Ke Xue Bao 20(4):246–258 Alex AF, Spitznas M, Tittel AP, Kurts C, Eter N (2010) Inhibitory effect of epigallocatechin gallate (EGCG), resveratrol, and curcumin on proliferation of human retinal pigment epithelial cells in vitro. Curr Eye Res 35(11):1021–1033 Lu HF, Lai KC, Hsu SC, Lin HJ, Yang MD, Chen YL, Fan MJ, Yang JS, Cheng PY, Kuo CL, Chung JG (2009) Curcumin induces apoptosis through FAS and FADD, in caspase-3-dependent and-independent pathways in the N18 mouse-rat hybrid retina ganglion cells. Oncol Rep 22(1):97–104 An JB, Ma JX, Liu DY, Gao YJ, Sheng MY, Wang HX, Liu LY (2009) The effect of curcumin on DNA content, mitochondrial transmembrane potential and calcium of rabbit cultured retinal pigment epithelial cells. Zhonghua Yan Ke Za Zhi 45(3):210–215 Sachdeva UM, O’Brien JM (2012) Understanding pRb: toward the necessary development of targeted treatments for retinoblastoma. J Clin Invest 122(2):425–434 Cohen VM (2013) Ocular metastases. Eye (Lond) 27(2):137–141 Papastefanou VP, Cohen VM (2011) Uveal melanoma. J Skin Cancer 2011:573974 Badiyan SN, Rao RC, Apicelli AJ, Acharya S, Verma V, Garsa AA, DeWees T, Speirs CK, Garcia-Ramirez J, Esthappan J, Grigsby PW, Harbour JW (2014) Outcomes of iodine-125 plaque brachytherapy for uveal melanoma with intraoperative ultrasonography and supplemental transpupillary thermotherapy. Int J Radiat Oncol Biol Phys 88(4):801–805 Verma V, Mehta MP (2016) Clinical outcomes of proton radiotherapy for uveal melanoma. Clin Oncol (R Coll Radiol) 28(8):e17–e27 Sreenivasan S, Thirumalai K, Danda R, Krishnakumar S (2012) Effect of curcumin on miRNA expression in human Y79 retinoblastoma cells. Curr Eye Res 37(5):421–428 Lu HF, Yang JS, Lai KC, Hsu SC, Hsueh SC, Chen YL, Chiang JH, Lu CC, Lo C, Yang MD, Chung JG (2009) Curcumin-induced DNA damage and inhibited DNA repair genes expressions in mouse–rat hybrid retina ganglion cells (N18). Neurochem Res 34(8):1491–1497 Verma V (2016) Relationship and interactions of curcumin with radiation therapy. World J Clin Oncol 7(3):275–283 Lin HJ, Su CC, Lu HF, Yang JS, Hsu SC, Ip SW, Wu JJ, Li YC, Ho CC, Wu CC, Chung JG (2010) Curcumin blocks migration and invasion of mouse-rat hybrid retina ganglion cells (N18) through the inhibition of MMP-2, -9, FAK, Rho A and Rock-1 gene expression. Oncol Rep 23(3):665–670 Aggarwal BB, Harikumar KB (2009) Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41(1):40–59 Lou J, Hu W, Tian R, Zhang H, Jia Y, Zhang J, Zhang L (2014) Optimization and evaluation of a thermoresponsive ophthalmic in situ gel containing curcumin-loaded albumin nanoparticles. Int J Nanomed 9:2517–2525 Duan Y, Cai X, Du H, Zhai G (2015) Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids Surf B Biointerfaces 128:322–330 Kuo CN, Chen CH, Chen SN, Huang JC, Lai LJ, Lai CH, Hung CH, Lee CH, Chen CY (2017) Anti-angiogenic effect of hexahydrocurcumin in rat corneal neovascularization. Int Ophthalmol. https://doi.org/10.1007/s10792-017-0530-6 Steigerwalt R, Nebbioso M, Appendino G, Belcaro G, Ciammaichella G, Cornelli U, Luzzi R, Togni S, Dugall M, Cesarone MR, Ippolito E, Errichi BM, Ledda A, Hosoi M, Corsi M (2012) Meriva®, a lecithinized curcumin delivery system, in diabetic microangiopathy and retinopathy. Panminerva Med 54(1 Suppl 4):11–16 Du JD, Fong WK, Caliph S, Boyd BJ (2016) Lipid-based drug delivery systems in the treatment of wet age-related macular degeneration. Drug Deliv Transl Res 6:781 Chaniyilparampu RN, Nair AK, Parthasarathy K, Gokaraju GR, Gokaraju RR, Bhupathiraju K, Mandapati VNSRR, Somashekara N (2010) Curcuminoids and its metabolites for the application in allergic ocular/nasal conditions. WO2010109482