Các ứng dụng điều trị và công nghệ sinh học của các aminopeptidase vi sinh vật đặc hiệu với substrat

Springer Science and Business Media LLC - Tập 104 - Trang 5243-5257 - 2020
Arya Nandan1, Kesavan Madhavan Nampoothiri2
1Department of Zoology, Kannur University, Mananthavady Campus, Wayanad, India
2Microbial processing Technology Division (MPTD), CSIR, National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, India

Tóm tắt

Aminopeptidase (EC 3.4.11) thuộc vào gia đình exoprotease, có khả năng xúc tác quá trình cắt đứt liên kết peptide nối axit amin ở đầu N với axit amin tiền nhiệm trong protein. Aminopeptidase xúc tác quá trình loại bỏ các axit amin ở đầu N khỏi các substrat mục tiêu bằng cách cắt đứt từng axit amin một cách tuần tự. Aminopeptidase vi sinh vật được chấp nhận rộng rãi như những enzym công nghiệp với nhiều ứng dụng khác nhau trong ngành thực phẩm và dược phẩm vì những enzym này có những đặc tính độc đáo hơn so với aminopeptidase từ các nguồn khác. Bài viết này mô tả các ứng dụng khác nhau của aminopeptidase vi sinh vật trong các lĩnh vực công nghiệp khác nhau. Những enzym này được sử dụng rộng rãi trong ngành công nghiệp thực phẩm như một tác nhân khử đắng cũng như trong việc chế biến các chất thủy phân protein. Trong ngành làm bánh, sản xuất bia và chế biến phô mai, aminopeptidase được sử dụng rất nhiều để loại bỏ vị đắng của peptide. Các chất ức chế của những enzym này được tìm thấy có ứng dụng lâm sàng lớn trong điều trị các bệnh như ung thư, tiểu đường, và nhiễm virus. Aminopeptidase cũng được sử dụng rộng rãi trong việc tổng hợp biopeptide và axit amin, và được chứng minh là hiệu quả hơn so với tổng hợp hóa học. Những enzym này có khả năng thủy phân các hợp chất organophosphate, vì vậy có ý nghĩa sinh học cũng như môi trường.

Từ khóa

#Aminopeptidase #enzym vi sinh vật #công nghiệp thực phẩm #ứng dụng lâm sàng #tổng hợp biopeptide

Tài liệu tham khảo

Ansorge S, Bank U, Nordhoff K, Taeger M, Striggow F (2006) Dual alanyl aminopeptidase and dipeptidyl peptidase IV inhibitors for functionally influencing different cells and for treating immunological, inflammatory, neuronal and other diseases. Patent WO2005/034940, 21 April 2005 Arif A, Mohammed K, Nadeem MS (2018) Biochemical and in silico evaluation of recombinant E. coli aminopeptidase and in vitro processed human interferon α-2b. Turk J Biol 42(3):240–249. https://doi.org/10.3906/biy-1801-83 Arima J, Iwabuchi M, Hatanaka T (2004) Gene cloning and overproduction of an aminopeptidase from Streptomyces septatus TH-2 and comparison with a calcium activated enzyme from Streptomyces griseus. Biochem Biophys Res Commun 317(2):531–538. https://doi.org/10.1016/j.bbrc.2004.03.082 Arima J, Uesugi Y, Iwabuchi M, Hatanaka T (2006a) Study on peptide hydrolysis by aminopeptidases from Streptomyces griseus, Streptomyces septatus and Aeromonas proteolytica. Appl Microbiol Biot 70(5):541–547. https://doi.org/10.1007/s00253-005-0105-8 Arima J, Uesugi Y, Uraji M, Yatsushiro S, Tsuboi S, Iwabuchi M (2006b) Modulation of Streptomyces leucine aminopeptidase by calcium: identification and functional analysis of key residues in activation and stabilization by calcium. J Biol Chem 281(9):5885–5894. https://doi.org/10.1074/jbc.M509025200 Augustyns K, Van der Veken P, Senten K, Haemers A (2005) The therapeutic potential of inhibitors of dipeptidyl peptidase IV (DPP IV) and related proline-specific dipeptidyl aminopeptidases. Curr Med Chem 12(8):971–998. https://doi.org/10.2174/0929867053507298 Backes BJ, Harris JL, Leonetti F, Craik CS, Ellman JA (2000) Synthesis of positional –scanning libraries of fluorogenic peptide substrate libraries to define the extended substrate specificity of plasmin and thrombin. Nat Biotechnol 18:187–193. https://doi.org/10.1038/72642 Bauvois B, Dauzonne D (2006) Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: chemistry, biological evaluations, and therapeutic prospects. Med Res Rev 26(1):88–130. https://doi.org/10.1002/med.20044 Ben-Bassat A, Bauer KA, Chang S, Chang SY (1991) Bacterial methionine N-terminal peptidase, US Patent 5,013,662, 7 May 1991 Bintsis T, Vafopoulou-Mastrojiannaki A, Litopoulou-Tzanetaki E, Robinson RK (2003) Protease, peptidase and esterase activities by lactobacilli and yeast isolates from Feta cheese brine. J Appl Microbiol 95(1):68–77. https://doi.org/10.1046/j.1365-2672.2003.01980.x Blevins LK, Parsonage D, Oliver MB, Domzalski E, Swords WE, Alexander-Miller MA (2017) A novel function for the Streptococcus pneumonia aminopepptidase N: inhibition of T cell effector function through regulation of TCR signaling. Front Immunol 8:1–17. https://doi.org/10.3389/fimmu.2017.01610 Bolumar T, Sanz Y, Aristoy MC, Toldra F (2003) Purification and characterization of a prolyl aminopeptidase from Debaryomyces hansenii. Appl Environ Microbiol 69(1):227-232. https://doi.org/10.1128/aem.69.1.227-232.2003 Bolumar T, Sanz Y, Flores M, Aristoy MC, Toldra F, Flores J (2006) Sensory improvement of dry-fermented sausages by the addition of cell-free extracts from Debaryomyces hansenii and Lactobacillus sakei. Meat Sci 72(3):457–466. https://doi.org/10.1016/j.meatsci.2005.08.010 Bradshaw RA, Brickey WW, Walker KW (1998) N-terminal processing: the methionine aminopeptidase and N alpha-acetyl transferase families. Trends Biochem Sci 23(7):263–267. https://doi.org/10.1016/s0968-0004(98)01227-4 Brauns SC, Dealtry G, Milne P, Naude R, de Venter VM (2005) Caspase-3 activation and induction of PARP cleavage by cyclic dipeptide cyclo (Phe-Pro) in HT-29 cells. Anticancer Res 25(6B):4197–4202 Chandu D, Nandi D (2003) PepN is the major aminopeptidase in Escherichia coli: insights on substrate specificity and role during sodium–salicylate induced stress. Microbiology 149(12):3437–3447. https://doi.org/10.1099/mic.0.26518-0 Chapot-Chartier MP, Deniel C, Rousseau M, Vassal L, Gripon JC (1994) Autolysis of two strains of Lactococcus lactis during cheese ripening. Int Dairy J 4(3):251–269. https://doi.org/10.1016/0958-6946(94)90016-7 Cheng TC, Harvey SP, Stroup AN (1993) Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina. Appl Environ Microbiol 59(9):3138–3140 Cheung LKY, Aluko R, Cliff MA, Li-Chan ECY (2015) Effects of exdopeptidase treatment on antihypertensive activity and taste attributes of enzymatic whey protein hydrolysates. J Funct Foods 13:262–275. https://doi.org/10.1016/j.jff.2014.12.036 Chevalet L, Souppe J, De Leseleuc J, Burnet J, Warmerdam MJ (2001) Aspergillus niger aminopeptidase compositions for making bread doughs and cheese. US Patent 6,271,013, 7 August 2001 Chien HCR, Lin LL, Chao SH, Chen CC, Wang WC, Shaw CY, Tsai YC, Hu HY, Hsu WH (2002) Purification, characterization, and genetic analysis of a leucine aminopeptidase from Aspergillus sojae. Biochim Biophys Acta 1576(1–2):119–126. https://doi.org/10.1016/s0167-4781(02)00307-x Choe Y, Leonetti F, Greenbaum DC, Lecaille F, Bogyo M, Bromme D, Ellman JA, Craik CS (2006) Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem 281(18):12824–12832. https://doi.org/10.1074/jbc.M513331200 Choi H, Laleye L, Amamtea GF, Simard RE (1996) Production of Aminopeptidase from skim milk whey permeate medium by Lactobacillus casei ssp. casei. J Dairy Sci 79(6):956–963. https://doi.org/10.3168/jds.S0022-0302(96)76446-9 Cogolludo A, Perez-Vizcaino F, Tamargo J (2005) New insights in the pharmacological therapy of arterial hypertension. Curr Opin Nephrol Hypertens 14(5):423–427. https://doi.org/10.1097/01.mnh.0000168334.09454.1c De Brito ES, García NHP, Amancio AC (2004) Use of a proteolytic enzyme in cocoa (Theobroma cacao L.) processing. Braz Arch Biol Technol 47(4):553–558. https://doi.org/10.1590/S1516-89132004000400008 Devi KR, Deka M, Jeyaram K (2015) Bacterial dynamics during year-long spontaneous fermentation for production of Ngari, a dry fermented fish product of Northeast India. Int J Food Microbiol 199:62–71. https://doi.org/10.1016/j.ijfoodmicro.2015.01.004 Drag M, Mikolajczyk J, Bekes M, Reyes-Turcu FE, Ellman JA, Wilkinson KD, Salvesen GS (2008) Positional –scanning fluorigenic substrate libraries reveal unexpected specificity determinants of DUBs deubiquitinating enzymes. Biochem J 415(3):367–375. https://doi.org/10.1042/BJ20080779 Dugat-Bony E, Straub C, Teissandier A, Onesime D, Loux V, Monnet C, Irlinger F, Landau S, Leclercq-Perlat M, Bento P, Fraud S, Gibrat J, Aubert J, Fer F, Guedon E, Pons N, Kennedy S, Beckerich J, Swennen D, Bonnarme P (2015) Overview of a surface-ripened cheese community functioning by meta-omics analyses. PLoS One 10(4):1–25. https://doi.org/10.1371/journal.pone.0124360 El-Kholy W, El-Soda M, Ezzat N, El-Shafei H (1998) Autolysis and intracellular release from cheese related dairy lactobacilli. Lait 78(4):439–452. https://doi.org/10.1051/lait:1998441 Fadda S, Sanz Y, Vignolo G, Aristoy MC, Oliver G, Toldra F (1999) Characterization of muscle sarcoplasmic and myofibrillar protein hydrolysis caused by Lactobacillus plantarum. Appl Environ Microbiol 65(8):3540–3546 Fehr AR, Perlman S (2015) Coronaviruses: an overview of their replication and pathogenesis. Coronaviruses 1282:1–23. https://doi.org/10.1007/978-1-4939-2438_1 FitzGerald RJ, O’Cuinn G (2006) Enzymatic debittering of food protein hydrolysates. Biotechnol Adv 24(2):234–237. https://doi.org/10.1016/j.biotechadv.2005.11.002 Flores M, Sanz Y, Spanier AM (1998) Contribution of muscle and microbial aminoeptidases to flavor development in dry-cured meat products. In: Contis ET, Ho CT, Mussinan CJ, Parliment TH, Shahidi F, Spanier AM (eds) Developments in food science, volume 40. Elsevier, pp 547–557. https://doi.org/10.1016/S0167-4501(98)80076-9 Fuke Y, Matsuoka H (1993) The purification and characterization of prolyl aminopeptidase from Penicillium camemberti. J Dairy Sci 76(9):2478–2484. https://doi.org/10.3168/jds.S0022-0302(93)77582-7 Gallego M, Mora L, Escudero E, Toldra F (2018) Bioactive peptides and free amino acids profiles in different types of European dry-fermented sausages. Int J Food Microb 276:71–78. https://doi.org/10.1016/j.ijfoodmicro.2018.04.009 Gao X, Yin Y, Zhou C (2018) Purification, characterisation and salt-tolerance molecular mechanisms of aspartyl aminopeptidase from Aspergillus oryzae 3.042. Food Chem 240:377–385. https://doi.org/10.1016/j.foodchem.2017.07.081 Gatti M, Fornasari ME, Mucchetti G, Addeo F, Neviani E (1999) Presence of peptidase activities in different varieties of cheese. Lett Appl Microbiol 28(5):368–372. https://doi.org/10.1046/j.1365-2672.1999.00541.x Giesler L, Linke D, Rabe S, Appel D, Berger RG (2013) Hydrolysis of wheat gluten by combining peptidases of Flammulina velutipes and electrodialysis. J Agric Food Chem 61(36):8641–8649. https://doi.org/10.1021/jf401716m Giyatmi, Irianto HE (2017) Enzymes in fermented fish. Adv Food Nutr Res 80:199–216. https://doi.org/10.1016/bs.afnr.2016.10.004 Goldberg AL, Akopian TN, Kisselev AF, Lee DH (1997) Protein degradation by the proteosome and dissection of its in vivo importance with synthetic inhibitors. Mol Biol Rep 24(1–2):69–75. https://doi.org/10.1023/A:1006860828265 Goldstein JM, Banbula A, Kordula T, Mayo JA, Travis J (2001) Novel extracellular x-Prolyl Dipeptidyl-Peptidase (DPP) from Streptococcus gordonii FSS2: an emerging subfamily of viridans streptococcal x-Prolyl DPPs. Infect Immun 69(9):5494–5501 Gonzales T, Robert-Baudouy J (1996) Bacterial aminopeptidases: properties and functions. FEMS Microbiol Rev 18(4):319–344. https://doi.org/10.1111/j.1574-6976.1996.tb00247.x Gray N (2011) Enzymes may boost chocolate flavor: food navigator. https://www.foodnavigator.com/Article/2011/05/17/Enzymes-may-boost-chocolate-flavour-Study. Accessed 1July 2019 Guenet C, Lepage P, Harris BA (1992) Isolation of the leucine aminopeptidase gene from Aeromonas proteolytica. Evidence for an enzyme precursor. J Biol Chem 267 (12):8390–8395 Harris JL, Backes BJ, Leonetti F, Mahrus S, Ellman JA, Craik CS (2000) Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc Natl Acad SciU S A97(14):7754–7759. https://doi.org/10.1073/pnas.140132697 Helgren TR, Wangtrakuldee P, Staker BL, Hagen TJ (2016) Advances in bacterial aminopeptidase inhibition. Curr Top Med Chem 16(4):397–414. https://doi.org/10.2174/1568026615666150813145410 Hershcovitz YF, Rabinovitch L, Langut Y, Reiland V, Shoham G, Shoham Y (2004) Identification of the catalytic residues in the double-zinc aminopeptidase from Streptomyces griseus. FEBS Lett 571(1–3):192–196. https://doi.org/10.1016/j.febslet.2004.07.001 Hinrichsen LL, Montel MC, Talon R (1994) Proteolytic and lipolytic activities of Micrococcus roseus (65), Halomonas elongate (16) and Vibrio sp (168) isolated from Danish bacon curing brines. Int J Food Microbiol 22(2–3):115–126. https://doi.org/10.1016/0168-1605(94)90136-8 Holz RC (2002) The aminopeptidase from Aeromonas proteolytica: structure and mechanism of co-catalytic metal centers involved in peptide hydrolysis. Coord Chem Rev 232(1–2):5–26. https://doi.org/10.1016/S0010-8545(01)00470-2 Holz RC, Bzymek KP, Swierczek SI (2003) Co-catalytic metallopeptidases as pharmaceutical targets. Curr Opin Chem Biol 7(2):197–206. https://doi.org/10.1016/S1367-5931(03)00033-4 Hsu YT, Su CY, Du HC, Jao SC, Li WS (2008) Evaluation of organophosphorous chemicals degrading enzymes: a comparison of Escherichia coli and human cytosolic aminopeptidase P. Chem Biodivers 5(7):1401–1411. https://doi.org/10.1002/cbdv.200890128 Huang WQ, Zhong LF, Meng ZZ, You ZJ, Li JZ, Luo XC (2015) The structure and enzyme characteristics of a recombinant leucine aminopeptidase rLap1 from Aspergillus sojae and its application in debittering. Appl Biochem Biotechnol 177(1):190–206. https://doi.org/10.1007/s12010-015-1737-5 Huberman L, Gollop N, Mumcuoglu KY, Breuer E, Bhusare SR, Shai Y, Galun R (2007) Antibacterial substances of low molecular weight isolated from the blowfly, Lucilia sericata. Med Vet Entomol 21(2):127–131. https://doi.org/10.1111/j.1365-2915.2007.00668.x Inguimbert N, Coric P, Dhotel H, Bonnard E, Llorens-Cortes C, Mota N, Fournie-Zaluski MC, Roques BP (2005) Synthesis and in vitro activities of new non-peptidic APA inhibitors. J Pept Res 65(2):175–188. https://doi.org/10.1111/j.1399-3011.2004.00211.x Ito K, Nakajima Y, Onohara Y, Takeo M, Nakashima K, Matsubara F, Ito T, Yoshimoto T (2006) Aminopeptidase N (proteobacteria alanyl aminopeptidase) from Escherichia coli: crystal structure and conformational change of the methionine 260 residue involved in substrate recognition. J Biol Chem 281:33664–33676. https://doi.org/10.1074/jbc.M605203200 Izawa N, Tokuyasu K, Hayashi K (1997) Debittering of protein hydrolysates using Aeromonas caviae aminopeptidase. J Agric Food Chem 45(3):543–545. https://doi.org/10.1021/jf960784t Jankiewicz U, Bielawski W (2003) The properties and functions of bacterial aminoepeptidases. Acta Microbiol Pol 52(3):217–231 Jao SC, Huang LF, Tao YS, Li WS (2004) Hydrolysis of organophosphate triesters by Escherichia coli aminopeptidase P. J Mol Catal 27(1):7–12. https://doi.org/10.1016/j.molcatb.2003.09002 Kauppinen S (1996) An enzyme with aminopeptidase activity. Patent WO 96/28542 Klein JR, Henrich B, Plapp R (1994) Cloning and nucleotide sequence analysis of the Lactobacillus delbriieckii ssp. lactis DSM7290 cysteine aminopeptidase gene pepC. FEMS Microbiol Lett 124(3):291–300. https://doi.org/10.1111/j.1574-6968.1994.tb07299.x Kratzer U, Frank R, Kalbacher H, Biehl B, Wostemeyer J, Voigt J (2009) Subunit structure of the vicilin-like globular storage protein of cocoa seeds and the origin of cocoa and chocolate specific aroma precursors. Food Chem 113(4):903–913. https://doi.org/10.1016/j.foodchem.2008.08.017 Kusumoto KI, Matsushita-Morita M, Furukawa I, Suzuki S, YamagataY KY (2008) Efficient production and partial characterization of aspartyl aminopeptidase from Aspergillus oryzae. J Appl Microbiol 105(5):1711–1719. https://doi.org/10.1111/j.1365-2672.2008.03889.x Labrie SJ, Mosterd C, Loignon S, Dupuis ME, Desjardins P, Rousseau GM, Tremblay DM, Romero DA, Horvath P, Fremaux C, Moineau S (2019) A mutation in the methionine aminopeptidase gene provides phage resistance in Streptococcus thermophiles. Sci Rep 9(1):13816. https://doi.org/10.1038/s41598-019-49975-4 Lee Y, Lee S, Jjung C, Kim H, Choi S, Kim J, Kim H, Seo J (2006) Aminopeptidase derived from Bacillus licheniformis, gene Encoding the aminopeptidase, expression vector containing the gene, transformant and method for preparation thereof, US Patent 7,098,018 B2, 29 Aug 2006 Lei F, Zhao Q, Sun-Waterhouse D, Zhao M (2017) Characterization of a salt-tolerant aminopeptidase from marine Bacillus licheniformis SWJS33 that improves hydrolysis and debittering efficiency for soy protein isolate. Food Chem 214:347–353. https://doi.org/10.1016/j.foodchem.2016.07.028 Lei F, Hu C, Zhang N, He D (2018) The specificity of an aminopeptidase affects its performance in hydrolyzing peanut protein isolate and zein. LWT Food Sci Technol 102:37–44. https://doi.org/10.1016/j.lwt.2018.10.041 Lemieux L, Simard RE (1991) Bitter flavour in dairy products. I. A review of the factors likely to influence its development, mainly in cheese manufacture. Lait 71(6):599–636. https://doi.org/10.1051/lait:1991647 Li X, Chang YH (1995) Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases. Proc Natl Acad SciU S A92(26):12357–12361. https://doi.org/10.1073/pnas.92.26.12357 Lin LL, Hsu WH, Wu CP, Chi MC, Chou WM, Hu HY (2004) A thermostable leucine aminopeptidase from Bacillus kaustophilus CCRC 11223. Extremophiles 8(1):79–87. https://doi.org/10.1007/s00792-003-0364-1 Lowther WT, Matthews BW (2002) Metalloaminopeptidases: common functional themes in disparate structural surroundings. Chem Rev 102(12):4581–4608. https://doi.org/10.1021/cr0101757 Macedo AC, Tˆania G, Tavares F, Malcata X (2003) Purification and characterization of an intracellular aminopeptidase from a wild strain of Lactobacillus plantarum isolated from traditional Serra da Estrela cheese. Enzym Microb Technol 32(1):41–48. https://doi.org/10.1016/S0141-0229(02)00234-X Maggiora LL, Orawski AT, Simmons WH (1999) Apstatin analogue inhibitors of Aminopeptidase P, a bradykinin degrading enzyme. J Med Chem 42(13):2394–2402. https://doi.org/10.1021/jm9805642 Markets and Markets (2019) Food enzymes market by type (carbohydrase, protease, lipase), application (beverages, bakery products, dairy products, confectionery products, processed foods), formulation (lyophilized powder and liquid), source, and region - global forecast to 2023. https://www.marketsandmarkets.com/Market-Reports/food-enzymes-market-800.html. Accessed 30 June 2019 Martins JM, Galinari E, Pimentel-Filho NJ, Ribeiro JI Jr, Furtado MM, Ferreira CLLF (2015) Determining the minimum ripening time of artisanal Minas cheese, a traditional Brazilian cheese. Braz J Microbiol 46(1):219–230. https://doi.org/10.1590/S1517-838246120131003 Matsushita-Morita M, Furukawa I, Suzuki S, Yamagata Y, Koide Y, Ishida H, Kusumoto KI (2010) Characterization of recombinant prolyl aminopeptidase from Aspergillus oryzae. J Appl Microbiol 109(1):156–165. https://doi.org/10.1111/j.1365-2672.2009.04641.x Merz M, Eisele T, Berends P, Appel D, Rabe S, Blankk I, Stressler T, Fischer L (2015) Flavourzyme, an enzyme preparation with industrial relevance: automated nine-step purification and partial characterization of eight enzymes. Agric Food Chem 63(23):5682–5693. https://doi.org/10.1021/acs.jafc.5b01665 Mest HJ (2006) Dipeptidyl peptidase-IV inhibitors can restore glucose homeostasis in type 2 diabetics via incretin enhancement. Curr Opin Investig Drugs 7(4):338–343 Meyer J, Butikofer U, Walther B, Wechsler D, Sieber R (2009) Hot topic: changes in angiotensin-converting enzyme inhibition and concentrations of the tripeptides Val-Pro-Pro and Ile-Pro-Pro during ripening of different Swiss cheese variations. J Dairy Sci 92(3):826–836. https://doi.org/10.3168/jds.2008-1531 Meyer-Barton E, Klein JR, Henrich B, Plapp R (1994) X-prolyl-dipeptidyl peptidase from Lactobacillus delbrueckii ssp. lactis, nucleic acids coding for the same and its use in fermented foodstuff preparation process. Patent WO94/16082, 21 July 1994 Mora L, Gallego M, Escudero E, Reig M, Aristoy M, Toldra F (2015) Small peptides hydrolysis in dry-cured meats. Int J Food Microbiol 212:9–15. https://doi.org/10.1016/j.ijfoodmicro.2015.04.018 Mora L, Gallego M, Toldra F (2018) ACEI-inhibitory peptides naturally generated in meat and meat products and their health relevance. Nutrients 10(9):1259–1271. https://doi.org/10.3390/nu10091259 Nampoothiri KM, Nagy V, Kovacs K, Szakacs G, Pandey A (2005) L-leucine aminopeptidase production by filamentous Aspergillus fungi. Lett Appl Microbiol 41(6):498–504. https://doi.org/10.1111/j.1472-765X.2005.01789.x Nandan AS, Nampoothiri KM (2014) Unveiling aminopeptidase P from Streptomyces lavendulae: molecular cloning, expression and biochemical characterization. Enzym Microb Technol 55:7–13. https://doi.org/10.1016/j.enzmictec.2013.11.003 Nandan A, Nampoothiri KM (2017a) Molecular advances in microbial aminopeptidases. Bioresour Technol 245(Part B):1757–1765. https://doi.org/10.1016/j.biortech.2017.05.103 Nandan A, Nampoothiri KM (2017b) Chapter 21 microbial aminopeptidases. In: Pandey A, Negi S, Soccol CR (eds) Current developments in biotechnology and bioengineering. Production, Isolation and Purification of Industrial Products. Elsevier, Cambridge, pp 491–507. Nandan A, Gaurav A, Pandey A, Nampoothiri KM (2010) Arginine specific aminopeptidase from Lactobacillus brevis. Braz Arch Biol Technol 53(6):1443–1450. https://doi.org/10.1590/S1516-89132010000600021 Nandan A, Pandey A, Nampoothiri KM (2011) Proline-specific extracellular aminopeptidase purified from Streptomyces lavendulae. Appl Biochem Biotechnol 163(8):994–1001. https://doi.org/10.1007/s12010-010-9103-0 Nemoto YO, Shimoyama Y, Nakasato M, Nishimata H, Ishikawa T, Sasaki M, Kimura S, Nemoto TK (2018) Distribution of dippeptidyl peptidase (DPP)4, DPP5, DPP5, DPP7 and DPP11 in human oral microbiota-potent biomarkers indicating presence of periodontopathic bacteria. FEMS Microbiol Lett 365(22):221. https://doi.org/10.1093/femsle/fny221 Nishiwaki T, Yoshimizu S, Furuta M, Hayashi K (2002) Debittering of enzymatic hydrolysates using an aminopeptidase from the edible Basidiomycete Grifola frondosa. J Biosci Bioeng 93(1):60–63. https://doi.org/10.1016/S1389-1723(02)80055-X Oliveira HS, Mamede ME, Góes-Neto A, Koblitz MG (2011) Improving chocolate flavor in poor-quality cocoa almonds by enzymatic treatment. J Food Sci 76(5):755–759. https://doi.org/10.1111/j.1750-3841.2011.02168.x Pan D, Tanokura M (2004) Purification and characterization of an aminopeptidase from Lactobacillus helveticus JCM 1004. Food Chem 88(4):511–516. https://doi.org/10.1016/j.foodchem.2004.01.082 Pan D, Luo Y, Tanokura M (2005) Antihypertensive peptides from skimmed milk hydrolysate digested by cell-free extract of Lactobacillus helveticus JCM1004. Food Chem 91(1):123–129. https://doi.org/10.1016/j.foodchem.2004.05.055 Petrovic N, Schacke W, Gahagan JR, O'Conor CA, Winnicka B, Conway RE, Mina-Osorio P, Shapiro LH (2007) CD13/APN regulates endothelial invasion and filopodia formation. Blood 110(1):142–150. https://doi.org/10.1182/blood-2006-02-002931 Rahulan R, Nampoothiri KM, Szakacs G, Nagy V, Pandey A (2009) Statistical optimization of L-leucine aminopeptidase production from Streptomyces gedenensis IFO 13427 under submerged fermentation using response surface methodology. Biochem Eng J43(1):64–71. https://doi.org/10.1016/j.bej.2008.08.011 Rahulan R, Dhar K, Nampoothiri K, Pandey A (2012) Aminopeptidase from Streptomyces gedanensis as a useful tool for protein hydrolysate preparations with improved functional properties. J Food Sci 77(7):791–797. https://doi.org/10.1111/j.1750-3841.2012.02773.x Rawlings ND, Tolle DP, Barrett AJ (2004) MEROPS: the peptidase database. Nucleic Acids Res 32(database issue):160–164. https://doi.org/10.1093/nar/gkh071 Research and Markets, Global Industrial Enzymes Market Growth, Trends, and Forecast 2019-2024 Competition for Raw Materials with Other Industries and Price Volatility Restraining Market Growth (2019). https://www.globenewswire.com/news-release/2019/03/29/1788385/0/en/Global-Industrial-EnzymesMarket-Growth-Trends-and-Forecast-2019-2024-Competition-for-Raw-Materials-with-Other-Industries-and-Price-Volatility-Restraining-Market-Growth.html. Accessed 30 June 2019 Rigolet P, Xi XG, Rety S, Chich JF (2005) The structural comparison of the bacterial PepX and human DPP-IV reveals sites for the design of inhibitors of PepX activity. FEBS J 272(8):2050–2059. https://doi.org/10.1111/j.1742-4658.2005.04631.x Sanz Y, Fadda S, Vignolo G, Aristoy MC, Oliver G, Toldra F (1999) Hydrolytic action of Lactobacillus casei CRL 705 on pork muscle sarcoplasmic and myofibrillar proteins. J Agric Food Chem 47(8):3441–3448. https://doi.org/10.1021/jf981255n Scharf U, Stolz P, Huscroft SC, Schmidt-Hahn K (2006) Use of aminopeptidase in dough, doughs and bread improvers comprising aminopeptidase. Patent Application. WO2006/009447, 26 Jan 2006 Schiffmann R, Neugebauer A, Klein CD (2006) Metal-mediated inhibition of Escherichia coli methionine aminopeptidase: structure-activity relationships and development of a novel scoring function for metal-ligand interactions. J Med Chem 49(2):511–522. https://doi.org/10.1021/jm050476z Schuster E, Sprossler B, Titze K, Gottschalk M, Khanh NQ, Wolf S, Plainer H (1997) Leucine aminopeptidases produced recombinantly from Aspergillus soyae, Patent no: WO 97/04108, 6 Feb 1997 Scornik OA, Botbol V (2001) Bestatin as an experimental tool in mammals. Curr Drug Metab 2(1):67–85. https://doi.org/10.2174/1389200013338748 Selvakumar P, Lakshmikuttyamma A, Dimmock JR, Sharma RK (2005) Methionine aminopeptidase 2 and cancer. Biochim Biophys Acta 1765(2):148–154. https://doi.org/10.1016/j.bbcan.2005.11.001 Shen Y, Wang F, Lan D, Liu Y, Yang B, Wang Y (2011) Biochemical properties and potential applications of recombinant leucine aminopeptidase from Bacillus kaustophilus CCRC 11223. Int J Mol Sci 12(11):7609–7625. https://doi.org/10.3390/ijms12117609 Shigemura Y, Iwai K, Morimatsu F, Iwamoto T, Mori T, Oda C, Taira T, Park EY, Nakamura Y, Sato K (2009) Effect of prolyl-hydroxyproline(Pro-Hyp), a food-derived collagen peptide in human blood, on growth of fibroblasts from mouse skin. J Agric Food Chem 57(2):444–449. https://doi.org/10.1021/jf802785h Sidhu GK, Singh S, Kumar V, Dhanjal DS, Datta S, Singh J (2019) Toxicity, monitoring and biodegradation of organophosphate pesticides: a review. Crit Rev Env Sci Tec 49(13):1135–1187. https://doi.org/10.1080/10643389.2019.1565554 Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471. https://doi.org/10.1111/j.1574-6976.2006.00018.x Sonoda H, Daimon K, Yamaji H, Sugimura A (2009) Efficient production of active Vibrio proteolyticus aminopeptidase in Escherichia coli by co-expression with engineered vibriolysin. Appl Environ Microbiol 84(1):191–198. https://doi.org/10.1007/s00253-009-2089-2 Sonoda H, Daimon K, Sugimura A, (2014) Method for producing aminopeptidase. EP 2 206777B1, 15 Jan 2014 Sousa LS, Rocha FS, Silveira PTD, Bispo ED, Soares SE (2016) Enzymatic activity of proteases and its isoenzymes in fermentation process in cultivars of cocoa (Theobroma cacao L.) produced in southern Bahia, Brazil. Food Sci Technol Campinas 36(4):656–663. https://doi.org/10.1590/1678-457x.10916 Stressler T, Eisele T, Schlayer M, Lutz-Wahl S, Fischer L (2013) Characterization of the recombinant exopeptidases pepx and pepn from Lactobacillus helveticus ATCC 12046 important for food protein hydrolysis. PLoS One 8(7):1–12. https://doi.org/10.1371/journal.pone.0070055 Stressler T, Ewert J, Merz M, Funk J, Claaßen W, Lutz-Wahl S (2016) A novel glutamyl (aspartyl)-specific aminopeptidase a from Lactobacillus delbrueckii with promising properties for application. PLoS One 11(3):1521–1139. https://doi.org/10.1371/journal.pone.0152139 Suresh PV, Prabhu GN (2013) Seafood. In: Chandrasekaran M (ed) valorization of food processing byproducts. CRC Press, Boca Raton, pp 685–736 Taylor A (1993a) Aminopeptidases: structure and function. FASEB J 7(2):290–298. https://doi.org/10.1096/fasebj.7.2.8440407 Taylor A (1993b) Aminopeptidase towards a mechanism of action. Trends Biochem Sci 18(5):167–171 Tchorbanov B, Marinova MD, Grozeva L (2011) Debittering of protein hydrolysates by Lactobacillus LBL-4 aminopeptidase. Enzyme Res 10:1–7. https://doi.org/10.4061/2011/538676 Toldra F, Reig M, Aristoy M, Mora L (2018) Generation of bioactive peptides during food processing. Food Chem 267:395–404. https://doi.org/10.1016/j.foodchem.2017.06.119 Tomohiro S, Nami N, Tomohiro K, Noriki N, Noriaki Y, Hidehiko W (2006) Method of improving taste and/or favor of food or drink. Patent application EP 1629719 A1, 1 Mar 2006 Udomsil N, Rodtong S, Tanasupawat S, Yongsawatdigul J (2015) Improvement of fish sauce quality by strain CMC5-3-1: a novel species of Staphylococcus sp. J Food Sci 80(9):2015–2022. https://doi.org/10.1111/1750-3841.12986 Umezawa Y, Yokoyama K, Kikuchi Y, Date M, Ito K, Yoshimoto T, Matsui H (2004) Novel prolyl tri/tetra-peptidyl aminopeptidase from Streptomyces mobaraensis: substrate specificity and enzyme gene cloning. J Biochem 136(3):293–300. https://doi.org/10.1093/jb/mvh129 Umitsuki G, Abe K (2000) Leucine aminopeptidase gene, recombinant DNA, and process for producing leucine aminopeptidase, US 6,127,161, 3 Oct 2000. https://doi.org/10.1371/journal.ppat.1006310 Vesanto E, Varmanen P, Steele JL, Palva A (1994) Characterization and expression of the Lactobacillus helveticus pepC gene encoding a general aminopeptidase. Eur J Biochem 224(3):991–997. https://doi.org/10.1111/j.1432-1033.1994.00991.x Virgili R, Schivazappa C, Parolari G, Bordini CS, Degni M (1998) Proteases in fresh pork muscle and their influence on bitter taste formation in dry-cured ham. J Food Biochem 22(1):53–63. https://doi.org/10.1111/j.1745-4514.1998.tb00230.x Visser S (1993) Proteolytic enzymes and their relation to cheese ripening and flavor; an overview. J Dairy Sci 76(1):329–350. https://doi.org/10.3168/jds.S0022-0302(93)77354-3 Voigt J, Biehl B, Heinrichs H, Kamaruddin S, Marsoner GC, Hugi A (1994a) In-vitro formation of cocoa-specific aroma precursors: aroma related peptides generated from cocoa seed protein by co-operation of an aspartic endoprotease and a carboxipeptidase. Food Chem 49(2):173–180. https://doi.org/10.1016/0308-8146(94)90155-4 Voigt J, Heinrichs H, Voigt G, Biehl B (1994b) Cocoa specific aroma precursors are generated by proteolytic digestion of the vicilin-like globulin of cocoa seeds. Food Chem 50(2):177–184. https://doi.org/10.1016/0308-8146(94)90117-1 Vo-Van T, Kusakabe I, Murakami K (1984) The aminopeptidase activity in fish sauce. Agric Biol Chem 48(2):525–527. https://doi.org/10.1080/00021369.1984.10866173 Watanabe J, Tanaka H, Akagawa T, Mogi Y, Yamazaki T (2007) Characterization of Aspergillus oryzae aspartyl aminopeptidase expressed in Escherichia coli. Biosci Biotechnol Biochem 71(10):2557–2560. https://doi.org/10.1271/bbb.70107 Wenzel F, Uhlig H, Lehmann K (1968) Aminopeptidase cleaving L-leucinamide, hypertension and oxytocin. US 3,405,034, 8 Oct 1968 Wu YY, Cao SM (2018) Study on endogenous protease and protein degradation of dry-salted Decapterus maruadsi. CyTA-J Food 16(1):350–356. https://doi.org/10.1080/19476337.2017.1406006 Wu B, Shi P, Li J, Wang Y, Meng K, Bai Y, Yao B (2010) A new aminopeptidase from the keratin-degrading strain Streptomyces fradiae var. k11. Appl Biochem Biotechnol 160(3):730–739. https://doi.org/10.1007/s12010-009-8537-8 Wu YT, Zhou ND, Zhou ZM, Gao XX, Tian YP (2014) A thermo-stable lysine aminopeptidase from Pseudomonas aeruginosa: isolation, purification, characterization, and sequence analysis. J Basic Microbiol 54(10):1110–1119. https://doi.org/10.1002/jobm.201300752 Yamamoto Y, Usuki H, Iwabuchi M, Hatanaka T (2010) Prolyl aminopeptidase from Streptomyces thermoluteus sub sp. Fuscus strain NBRC14270 and synthesis of proline-containing peptides by its S144C variant. Appl Environ Microbiol 76(18):6180–6185. https://doi.org/10.1128/AEM.01242-10 Yokoyama R, Kawasaki H, Hirano H (2006) Identification of yeast aspartyl aminopeptidase gene by purifying and characterizing its product from yeast cells. FEBS J 273(1):192–198. https://doi.org/10.1111/j.1742-4658.2005.05057.x Zhao G, Ding LL, Yao Y, Yanping C, Pan ZH, Kong DH (2018) Extracellular proteome analysis and flavor formation during soy sauce fermentation. Front Microbiol 9:1–7. https://doi.org/10.3389/fmicb.2018.01872 Zheng B, Liu Y, He X, Hu S, Li S, Chen M, Jiang W (2017) Quality improvement on half –fin anchovy (Setipinna taty) fish sauce by Psychrobacter sp. SP-1 fermentation. J Sci Food Agric 97(13):4484–4493. https://doi.org/10.1002/jsfa.8313 Zhong H, Bowen JP (2006) Antiangiogenesis drug design: multiple pathways targeting tumor vasculature. Curr Med Chem 13(8):849–862. https://doi.org/10.2174/092986706776361085 Zotta T, Ricciardi A, Parente E (2007) Enzymatic activities of lactic acid bacteria isolated from Cornetto di Matera sourdough. Int J Food Microbiol 115(2):165–172. https://doi.org/10.1016/j.ijfoodmicro.2006.10.026