Theranostic applications of nanoparticles in cancer

Drug Discovery Today - Tập 17 Số 17-18 - Trang 928-934 - 2012
Naveed Ahmed1, Hatem Fessi2, Abdelhamid Elaı̈ssari2
1University of Lyon, F-69622 Lyon, France
2Laboratoire d'automatique et de génie des procédés

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gao, 2009, Multifunctional magnetic nanoparticles: design, synthesis and biomedical applications, Acc. Chem. Res., 42, 1097, 10.1021/ar9000026

Solanki, 2008, Nanotechnology for regenerative medicine: nanomaterials for stem cells imaging, Nanomedicine, 3, 567, 10.2217/17435889.3.4.567

Laurence, 2007, Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles, Int. J. Nanomedicine, 2, 541

Warner, 2004, Diagnostics plus therapy=theranostics, Scientist, 18, 38

Sumer, 2008, Theranostic nanomedicine for cancer, Nanomedicine, 3, 137, 10.2217/17435889.3.2.137

Bae, 2011, Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging, Biomaterials, 32, 176, 10.1016/j.biomaterials.2010.09.039

Huang, 2011, Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy, Biomaterials, 32, 9796, 10.1016/j.biomaterials.2011.08.086

Chen, 2010, A molecularly targeted theranostic probe for ovarian cancer, Mol. Cancer Ther., 9, 1028, 10.1158/1535-7163.MCT-09-0829

Prabaharan, 2009, Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor targeted drug delivery, Biomaterials, 30, 6065, 10.1016/j.biomaterials.2009.07.048

Lee, 2009, All-in-one target-cell specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery, Angew. Chem. Int. Ed. Engl., 48, 4174, 10.1002/anie.200805998

Yang, 2010, Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging, Biomaterials, 31, 9065, 10.1016/j.biomaterials.2010.08.039

Ling, 2011, Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy, Biomaterials, 32, 7139, 10.1016/j.biomaterials.2011.05.089

Roy, 2003, Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy, J. Am. Chem. Soc., 125, 7860, 10.1021/ja0343095

Park, 2009, Biodegradable luminescent porous silicon nanoparticles for in vivo applications, Nat. Mater., 8, 331, 10.1038/nmat2398

Pantarotto, 2004, Functionalized carbon nanotubes for plasmid DNA gene delivery, Angew. Chem. Int. Ed Engl., 43, 5242, 10.1002/anie.200460437

Liu, 2008, Drug delivery with carbon nanotubes for in vivo cancer treatment, Cancer Res., 68, 6652, 10.1158/0008-5472.CAN-08-1468

Savla, 2011, Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer, J. Contr. Release, 153, 16, 10.1016/j.jconrel.2011.02.015

Yuan, 2009, Anticancer drug-DNA interactions measured using a photo induced electron-transfer mechanism based on luminescent quantum dots, Anal. Chem., 81, 362, 10.1021/ac801533u

Li, 2004, One-pot reaction to synthesize water-soluble magnetite nanocrystals, Chem. Mater., 16, 1391, 10.1021/cm035346y

Morel, 2008, Sonochemical approach to the synthesis of Fe3O4/SiO2 core/shell nanoparticles with tunable properties, ACS Nano, 2, 847, 10.1021/nn800091q

Souza, 2008, Mesoporous silica–magnetite nanocomposite synthesized by using a neutral surfactant, Nanotechnology, 19, 185603, 10.1088/0957-4484/19/18/185603

Liong, 2008, Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery, ACS Nano, 2, 889, 10.1021/nn800072t

Insin, 2008, Incorporation of iron oxide nanoparticles and quantum dots into silica microspheres, ACS Nano, 2, 197, 10.1021/nn700344x

Kang, 2009, Stabilization of superparamagnetic iron oxide core–gold shell nanoparticles in high ionic strength media, Langmuir, 25, 13384, 10.1021/la9019734

Moriggi, 2009, Gold nanoparticles functionalized with gadolinium chelates as high-relaxivity MRI contrast agents, J. Am. Chem. Soc., 131, 10828, 10.1021/ja904094t

Levin, 2009, Magnetic–plasmonic core–shell nanoparticles, ACS Nano, 3, 1379, 10.1021/nn900118a

Van Berkel, 2009, A simple route to multimodal composite nanoparticles, Macromolecules, 42, 1425, 10.1021/ma802849f

Zhao, 2009, Magnetic Janus particles prepared by a flame synthetic approach: synthesis, characterizations and properties, Adv. Mater., 21, 184, 10.1002/adma.200800570

Kamei, 2009, Direct cell entry of gold/iron-oxide magnetic nanoparticles in adenovirus mediated gene delivery, Biomaterials, 30, 1809, 10.1016/j.biomaterials.2008.12.015

Kohler, 2005, Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells, Langmuir, 21, 8858, 10.1021/la0503451

Huh, 2005, In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals, J. Am. Chem. Soc., 127, 12387, 10.1021/ja052337c

Lee, 2007, Artificially engineered magnetic nanoparticles for ultrasensitive molecular imaging, Nat. Med., 13, 95, 10.1038/nm1467

Veiseh, 2011, Cell transcytosing poly-arginine coated magnetic nanovector for safe and effective siRNA delivery, Biomaterials, 32, 5717, 10.1016/j.biomaterials.2011.04.039

Yu, 2008, Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo, Angew. Chem. Int. Ed. Engl., 47, 5362, 10.1002/anie.200800857

Piao, 2008, Wrap-bake-peel process for nanostructural transformation from beta-FeOOH nanorods to biocompatible iron oxide nanocapsules, Nat. Mater., 7, 242, 10.1038/nmat2118

Jain, 2008, Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging, Biomaterials, 29, 4012, 10.1016/j.biomaterials.2008.07.004

Yang, 2011, cRGD-functionalized, DOX-conjugated and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging, Biomaterials, 32, 4151, 10.1016/j.biomaterials.2011.02.006

Kievit, 2011, Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro, J. Contr. Release, 152, 76, 10.1016/j.jconrel.2011.01.024

Hwu, 2009, Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles, J. Am. Chem. Soc., 131, 66, 10.1021/ja804947u

Cheng, 2009, Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin, J. Am. Chem. Soc., 131, 10637, 10.1021/ja903300f

Xie, 2010, PET/NIRF/MRI triple functional iron oxide nanoparticles, Biomaterials, 31, 3016, 10.1016/j.biomaterials.2010.01.010

Xu, 2011, Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery, Biomaterials, 32, 9364, 10.1016/j.biomaterials.2011.08.053

Pal, 2011, Microstructural investigations of zirconium oxide on core–shell structure of carbon nanotubes, J. Nanopart. Res., 13, 2597, 10.1007/s11051-010-0152-7

Liu, 2009, Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery, Nano Res., 2, 85, 10.1007/s12274-009-9009-8

Boucetta, 2008, Multiwalled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics, Chem. Commun., 4, 459, 10.1039/B712350G

Sitharaman, 2005, Superparamagnetic gadonanotubes are high-performance MRI contrast agents, Chem. Commun., 31, 3915, 10.1039/b504435a

Singh, 2005, Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors, J. Am. Chem. Soc., 127, 4388, 10.1021/ja0441561

Kam, 2005, Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing, J. Am. Chem. Soc., 127, 12492, 10.1021/ja053962k

Liu, 2007, siRNA delivery into human T cells and primary cells with carbon-nanotube transporters, Angew. Chem. Int. Ed. Engl., 46, 2023, 10.1002/anie.200604295

Krishna, 2010, Polyhydroxy fullerenes for non-invasive cancer imaging and therapy, Small, 62, 2236, 10.1002/smll.201000847

Qi, 2008, Emerging application of quantum dots for drug delivery and therapy, Expert Opin. Drug Deliv., 5, 263, 10.1517/17425247.5.3.263

Gao, 2004, In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol., 22, 969, 10.1038/nbt994

Bagalkot, 2007, Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer, Nano Lett., 7, 3065, 10.1021/nl071546n

Derfus, 2007, Targeted quantum dot conjugates for siRNA delivery, Bioconjug. Chem., 18, 1391, 10.1021/bc060367e

Melancon, 2011, Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer, Biomaterials, 32, 7600, 10.1016/j.biomaterials.2011.06.039

Ekaterina, 2011, Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles, J. Surgical Res., 166, e3, 10.1016/j.jss.2010.10.039

Fales, 2011, Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: a potential nanoplatform for theranostics, Langmuir, 27, 12186, 10.1021/la202602q

Gibson, 2007, Paclitaxel-functionalized gold nanoparticles, J. Am. Chem. Soc., 129, 11653, 10.1021/ja075181k

Cheng, 2008, Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer, J. Am. Chem. Soc., 130, 10643, 10.1021/ja801631c

Ji, 2007, Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy, J. Phys. Chem. C, 111, 6245, 10.1021/jp0702245

Vivero-Escoto, 2009, Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere, J. Am. Chem. Soc., 131, 3462, 10.1021/ja900025f

Giri, 2005, Stimuli-responsive controlled release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles, Angew. Chem. Int. Ed. Engl., 44, 5038, 10.1002/anie.200501819

Kim, 2007, Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy, J. Am. Chem. Soc., 129, 2669, 10.1021/ja0680257

Yang, 2011, Multifunctional poly (aspartic acid) nanoparticles containing iron oxide nanocrystals and doxorubicin for simultaneous cancer diagnosis and therapy, Colloids Surf. A: Physicochem. Eng. Aspects, 391, 208, 10.1016/j.colsurfa.2011.04.032

Yang, 2012, Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles, Adv. Mater., 24, 1868, 10.1002/adma.201104964

Ahmed, 2012, Modified double emulsion process as a new route to prepare submicron biodegradable magnetic/polycaprolactone particles for in vivo theranostics, Soft Matter, 8, 2554, 10.1039/c2sm06872a

Sotiriou, 2011, Hybrid, silica-coated, Janus-like plasmonic-magnetic nanoparticles, Chem. Mater., 23, 1985, 10.1021/cm200399t