Theory of a low magnetic field gyrotron (gyromagnetron)

Y. Y. Lau1, Larry R. Barnett1
1Code 4740 Plasma Physics Division, Naval Research Laboratory, Washington, DC

Tóm tắt

Từ khóa


Tài liệu tham khảo

J. Hirshfield and V.L. Granatstein, ?The electron cyclotron maser?An historical survey,? IEEE Trans., Vol.MTT25, pp. 522?527, 1977.

R.S. Symons and H.R. Jory, ?Cyclotron resonances devices,? Advances in Electronics and Electron Physics, Vo.55, pp. 1?75. [Ed.; L. Marton and C. Marton, Academic Press,] 1981.

P.A. Lindsay, ?Gyrotrons (Electron cyclotron masers): Different mathematical models,? IEEE J. Quantum Electron., Vol.QE17, pp. 1327?1333, 1981.

A.V. Gaponov, V.A. Flyagin, A.L. Goldenberg, G.S. Nusinovich, S.E. Tsimring, V. G. Usov, and S.N. Vlasov, ?Powerful millimeter-wave gyrotrons,? Int. J. Electron., Vol.51, pp. 277?302, 1981.

V.L. Granatstein, M. Read, and L.R. Barnett, ?Measured performance of gyrotron oscillators and amplifiers,? Infrared and Millimeter Waves, Vol.5, Acad. Press, (1982).

Y.Y. Lau and L.R. Barnett, ?A low magnetic field gyrotron?Gyromagnetron,? Int. J. Electronics (Oct. 1982 issue). Also, Patent Disclosure, Navy Case No. 66508 (March 4, 1982).

J. Feinstein and H.R. Jory, ?High frequency electron discharge device,? U.S. Patent No. 3457450, July 22, 1969. Interest in this device is recently revived by A. Kupiszewski, N.C. Luhman, and H. Jory, ?Compact cyclotron resonance maser? Paper W-2-5, Sixth Int. Conf. Infrared MM waves, Miami (Dec. 1981).

K.R. Chu, ?Theory of electron cyclotron maser interaction in a cavity at the harmonic frequencies,? Phys. Fluids, Vol.21, pp. 2354?2364, 1978.

W.W. Destler, R.L. Weiler, and C.D. Striffler, ?High power microwave wave generation from a rotatingE layer in a magnetron-type waveguide,? Appl. Phys. Lett. Vol.38, pp. 570?572, 1981. An earlier experiment using a smooth waveguide was performed by W.W. Destler, D.W. Hudgings, M.J. Rhee, S. Kawasaki, and V.L. Granatstein, ?Experimental study of microwave generation and suppression in a non-neutralE-layer,? J. Appl. Phys.48, pp. 3291?3296, 1977. A recent theoretical paper on this experiment is given by W.W. Destler, H. Romero, C.D. Striffler, R.L. Weiler, and W. Namkung, ?Intense microwave generations from a non-neutral rotatingE-layer,? J. Appl. Phys.52, pp. 2740?2749, 1981.

N.C. Christofilos, R.J. Briggs, R.E. Hester, E.J. Lauer, P.B. Weiss, inProc. Conf. Plasma Phys. and Controlled Nuclear Fusion Research, (IAEA, Vienna), Vol.2, p. 211 (1966). See also, J. Beal, R.J. Briggs, R.E. Hester, E.J. Lauer, and P.B. Weiss, Bull. Am. Phys. Soc., Vol.11, p. 565 (1966). The first six cyclotron harmonic of the negative mass instability were definitively identified in the Astron. Higher harmonics were observed qualitatively.

R.J. Briggs and V.K. Neil, ?Negative mass instability in cylindrical layer of relativistic electrons,?J. Nuclear Energy, Vol.C9, pp. 209?227, 1967. The importance of synchronous interaction was first noted in this paper, as was confirmed by M.S. Grewal and J.A. Byers, ?A computational study of the negative mass instability in the nonlinear regime,? Plasma Physics, Vol. 11, pp. 727?738, 1969.

Y.Y. Lau and R.J. Briggs, ?Effects of cold plasma on the negative mass instability of a relativistic electron layer,?Phys. Fluids, Vol.14, pp. 967?976, 1971.

C.E. Nielsen, A.M. Sessler, and K.R. Symon, inProc. Int. Conf. on High-Energy Accelerators and Instrumentation (Geneva, Switzerland). Geneva: CERN, 1959, p. 239.

A.A. Kolomenskii and A.N. Lebedev, inProc. Int. Conf. on High-Energy Accelerators and Instrumentation (Geneva, Switzerland). Geneva: CERN, 1959, p. 115.

R.W. Landau and V.K. Neil, ?Negative mass instability,?Phys. Fluids, Vol.9, pp. 2412?2427, 1966.

H. Uhm and R.C. Davidson, ?Kinetic description of negative mass instability in an intense relativistic nonneutralE-layer,?Phys. Fluids, Vol. 20, pp. 771?784, 1977.

Y.Y. Lau, M.J. Baird, L.R. Barnett, K.R. Chu, and V.L. Granatstein, ?Cyclotron maser instability as a resonant limit of space charge wave,? Int. J. Electron., Vol.51, pp. 331?340, 1981.

Y.Y. Lau, ?Simple macroscopic theory of cyclotron maser instability,? IEEE Trans., Vol.ED-29, pp. 320?335, 1982.

See, e.g., N.M. Kroll and W.E. Lamb, ?The resonant modes of rising sun and other unstrapped magnetron anode blocks,?J. Appl. Phys. Vol.29, pp. 166?186 (1948).

Y.Y. Lau and K.R. Chu, ?Gyrotron Traveling Wave Amplifier III: A proposed wide band fast wave amplifier,? Int. J. Infrared and Millimeter Waves, Vol.2, pp. 415?425, 1981.

K.R. Chu, Y.Y. Lau, L.R. Barnett, and V.L. Granatstein, ?Theory of a wide-band distributed gyrotron travelling wave amplifier,? IEEE Trans., Vol.ED-28, pp. 866?871, 1981.

L.R. Barnett, Y.Y. Lau, K.R. Chu, and V.L. Granatstein, ?An experimental wide-band gyrotron travelling wave amplifier,? IEEE Trans., Vol.,ED-28, pp. 872?875, 1981.

Y.Y. Lau, L.R. Barnett, and V.L. Granatstein, ?Gyrotron Travelling Wave Amplifier: IV. Analysis of launching loss,? Int. J. Infrared and Millimeter Waves, Vol.3, pp. 45?62, 1982.

See, e.g., R.E. Collins,Field theory of guided waves, p. 384, McGraw Hill, 1960.

J.R. Pierce,Travelling Wave Tubes, Princeton, NJ: Van Nostrand, 1950. See, also, M. Chodorow and C. Susskind,Fundamentals of Microwave Electronics, McGraw-Hill, 1964.

See, e.g., R.G.E. Hutter,Beam and Wave Electronics in Microwave Tubes, Boston Technical Publishers, Inc. (1960).

See, e.g., H. Motz,Electromagnetic problems in microwave theory, Methuen, London, p. 123 (1951). An electrostatic fringe field as an assumed solution has also been known to yield an accurate solution in the variational formulation involving waveguide discontinuies. See J. Schwinger and Saxon,Waveguide Discontinuities, Gordon and Breech, New York, 1968.

See Ref. 24, R.E. Collins,Field theory of guided waves, p. 384, McGraw Hill, 1960.

A. Palevsky and G. Bekefi, ?Microwave emission from pulsed, relativistice-beam diode. II. The multiresonator magnetron,? Phys. Fluids, Vol.22, pp. 986?996 (1979).

Y.Y. Lau, K.R. Chu, L.R. Barnett, and V.L. Granatstein, ?Gyrotron travelling wave amplifier: I. Analysis of oscillations,?Int. J. Infrared Millimeter Waves, Vol.2, pp. 373?393, 1981.

Such a dispersion relation has been proved to be extremely useful in the design of a tapered waveguide and a tapered magnetic field for wide band operation. See Ref. [20].

P. Sprangle and A.T. Drobot, ?The linear and self-consistent nonlinear theory of the electron cyclotron maser instability,?IEEE Trans. Microwave Theory Tech., Vol.MTT-25, pp. 528?544, 1977.

K.R. Chu, A.T. Drobot, H.H. Szu, and P. Sprangle, ?Theory and simulation of the gyrotron travelling wave amplifier operating at cyclotron harmonics,?IEEE Trans. Microwave Theory Tech, Vol.MTT-28, pp. 313?317, 1980.

E. Ott and W.M. Manheimer, ?Theory of microwave emission by velocity-space instabilities of an intense relativistic electron beam,?IEEE Trans. Plasma Sci., Vol.PS-3, pp. 1?5, 1975.

H.S. Uhm, R.C. Davidson, and K.R. Chu, ?Self-consistent theory of cyclotron maser instability for intense hollow electron beams,?Phys. Fluids, Vol.21, pp. 1866?1876, 1978; also pp. 1877?1886, 1978.

C.J. Edgcombe, ?The dispersion equation for the gyrotron amplifier,?Int. J. Electron., Vol.48, pp. 471?486, 1980.

J.Y. Choe and S. Ahn, ?General mode analysis of a gyrotron dispersion relation,?IEEE Trans. Electron Devices, Vol.ED-28, pp. 94?102, 1980.

A.J. Sangster, ?Small signal bandwidth characteristics of a travelling wave gyrotron amplifier,?Int. J. Electron., Vol.51, pp. 583?594, 1981.

G. Mourier, ?Gyrotron tubes?A theoretical study,?Arch. Elek. Ubertragung., Vol.34, pp. 473?484, 1980.

G.L. Chen, K.T. Chang, and T.C. Fang, ?A wave approach to hollow cylindrical electron cyclotron masers,?Int. J. of Infrared and MM Waves, Vol.1, pp. 247?254, 1980.

S. Liu and Z. Yang, ?The kinetic theory of the electron cyclotron resonance maser with space charge effect taken into consideration,?Int. J. Electron., Vol.51, pp. 341?349, 1981.