Theory and Practice of Mixing: A Review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Strenk, F., Peremeshivanie i apparaty s meshalkami (Mixing and Stirred Apparatuses), Leningrad: Khimiya, 1975.
Oldshue, J.Y., Fluid Mixing Technology, New York: McGraw-Hill, 1983.
Braginskii, L.N., Begachev, V.I., and Barabash, V.M., Peremeshivanie v zhidkikh sredakh. Fizicheskie osnovy i inzhenemye metody rascheta (Mixing in Liquid Media: Physical Fundamentals and Engineering Computational Methods), Leningrad: Khimiya, 1984.
Sokolov, V.N. and Domanskii, I.V., Gazozhidkostnye reaktory (Gas–Liquid Reactors), Leningrad: Mashinostroenie, 1976.
Budtov, V.P. and Konsetov, V.V., Teplomassoperenos v polimerizatsionnykh protsessakh (Heat and Mass Transfer in Polymerization Processes), Leningrad: Khimiya, 1983.
Sal’kova, A.G. and Loboda, P.P., Mass transfer in an apparatus with a vibratory mixing device, Tezisy dokladov. VI Vsesoyuznaya konferentsiya “Teoriya i praktika peremeshivaniya v zhidkikh sredakh” (Abstracts of Papers Presented at the VI All-Union Conference “Theory and Practice of Mixing in Liquid Media”) (Leningrad, 1990). Moscow: Nauchno-Issled. Inst. Tekh.-Ekon. Issled. v Khim. Komplekse, 1990, p. 89.
Logvinenko, D.D., The use of a rotating magnetic field for the agitation of liquid media, Tezisy dokladov. VI Vsesoyuznaya konferentsiya “Teoriya i praktika peremeshivaniya v zhidkikh sredakh” (Abstracts of Papers Presented at the VI All-Union Conference “Theory and Practice of Mixing in Liquid Media”) (Leningrad, 1990). Moscow: Nauchno-Issled. Inst. Tekh.-Ekon. Issled. v Khim. Komplekse, 1990, p. 26.
Landau, L.D. and Lifshitz, E.M., Mekhanika sploshnykh sred (The Mechanics of Continua), Moscow: Gostekhizdat, 1953.
Soo, S.L., Fluid Dynamics of Multiphase Systems, Waltham, Mass.: Blaisdell, 1967.
Levich, V.G., Physicochemical Hydrodynamics, Englewood Cliffs, N.J.: Prentice Hall, 1962.
Kogan, V.B., Teoreticheskie osnovy tipovykh protsessov khimicheskoi tekhnologii (Theoretical Fundamentals of Unit Operations in Chemical Engineering), Leningrad: Khimiya, 1977.
Cudak, M., Domanski, M., Szoplik, J., and Karcz, J., An effect of the impeller eccentricity on the process characteristics in an agitated vessel, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 75.
Montante, G., Bakker, A., Paglianti, A., and Magelli, F., Effect of the shaft eccentricity of the hydrodynamics of unbaffled stirred tanks, Chem. Eng. Sci., 2006, vol. 61, no. 9, pp. 2807–2814. doi 10.1016/j.ces.2005.09.021
Oldshue, J.Y., Recent changes in mixing process technology have increased our understanding of process mechanics, Chem. Eng. Prog., 1989, vol. 5, pp. 3–42.
Domanskii, I.V., Mil’chenko, A.I., and Vorob’ev- Desytovskii, N.V., Large size agitators with precession impeller for ore slurries—Study, design, tests, Chem. Eng. Sci., 2011, vol. 66, no. 11, pp. 2277–2284. doi 10.1016/j.ces.2011.01.035
Barabash, V.M., Begachev, V.I., and Lobanov, A.N., On the power characteristics of a modified helicalscrew mixer, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 52.
Belevitskaya, M.A., The NORD production program: Meeting the wishes of customers, Oborud. Razrab. Tekhnol., 2013, nos. 7–9, p. 79.
Hentrich, P., EKATO Handbook of Mixing Technology: General Theory, Selection Criteria, Application, Schopfheim, Germany: EKATO Rühr-und Mischtechnik, 1991.
Liepe, F., Mockel, H.O., and Winkler, H., Untersuchungen über Ho-mogenisieren und über Turbulenz in Rührmashinen, Chem. Tech., 1971, vol. 23, pp. 231–237.
Mockel, H.O., Die Verteilung der örtlichen Energiedissipation in einen Rührwerk, Chem. Tech., 1980, vol. 32, no. 3, pp. 127–129.
Fortier, A., Mecanique des suspensions, Paris: Masson et Cie, 1967.
Karaushev, A.V., Problemy dinamiki estestvennykh vodnykh potokov (Problems of the Dynamics of Natural Water Flows), Leningrad: Gidrometeoizdat, 1960.
Barabash, V.M., Braginskii, L.N., and Kozlova, E.G., The use of stirred apparatuses for the agitation of highly concentrated suspensions, Teor. Osn. Khim. Tekhnol., 1990, vol. 24, no. 1, pp. 63–68.
Barabash, V.M., Lalakina, L.L., and Vasil’eva, V.S., A high-efficiency gas-distribution device for stirring in liquid–gas systems, Tezisy dokladov. VI Vsesoyuznaya konferentsiya “Teoriya i praktika peremeshivaniya v zhidkikh sredakh” (Abstracts of Papers Presented at the VI All-Union Conference “Theory and Practice of Mixing in Liquid Media”) (Leningrad, 1990). Moscow: Nauchno-Issled. Inst. Tekh.-Ekon. Issled. v Khim. Komplekse, 1990.
Barabash, V.M., Hydrodynamics and mass transfer in agitated gas–liquid system, Gas(Vapor)–Liquid Systems, New York: Nova Science, 1996, p. 215.
Braginskii, L.N. and Belevitskaya, M.A., On the breakup of droplets during mechanical agitation in the absence of coalescence, Teor. Osn. Khim. Tekhnol., 1990, vol. 24, no. 4, pp. 509–516.
Braginsky, L.N. and Belevitskaya, M.A., Kinetics of drops breakup in agitated vessels, Liquid–Liquid Systems, New York: Nova Science, 1996, p. 1.
Barabash, V.M. and Belevitskaya, M.A., RF Patent 2176544, 2001.
Pieralisi, I., Micheletti, M., Paglianti, A., and Ducci, A., Multiphase flow in orbitally shaken bioreactors, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 75.
Seeger, D., Highly effective manufacturing of paint and coatings, Asia Pac. Coat. J., 2013, vol. 26, no. 5, p. 26.
Higbee, R., Giacomelli, J., and Wyczalkowski, W., New impeller design: Anti-ragging impeller ARI2, Proc. 14th European Conference on Mixing, Warszawa, 2012, p. 157.
Fort, I., On hydraulic efficiency of pitched blade impellers, Chem. Eng. Res. Des., 2011, vol. 89, p. 611.
Cudak, M., Domanski, M., Szoplik, J., and Karcz, J., An effect of the impeller eccentricity on the process characteristics in an agitated vessel, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 75.
Cudak, M. and Karcz, J., The effects of eccentricity of axial flow impeller on the momentum transfer process in an agitated vessel, Exp. Therm. Fluid Sci., 2013, vol. 44, p. 385.
Cudak, M. and Karcz, J., Local momentum transfer process in a wall region of an agitated vessel equipped with an eccentric impeller, Ind. Eng. Chem. Res., 2011, vol. 50, no. 7, p. 4140.
Barabash, V.M., Begachev, V.I., and Lobanov, A.N., On the power characteristics of a modified helicalscrew mixer, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 52.
Komoda, Y., Senda, S., Yamagami, N., Hirata, Y., Suzuki, H., and Hidema, R., Torque variation of a rotationally reciprocating plate impeller and its relationship with fluid flow in a cylindrical vessel, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 193.
Senda, S., Komoda, Y., Hirata, Y., Takeda, H., Suzuki, H., and Hidema, R., Fluid deformation induced by a rotationally reciprocating impeller, J. Chem. Eng. Jpn., 2014, vol. 47, p. 151.
Pieralisi, I., Micheletti, M., Paglianti, A., and Ducci, A., Multiphase flow in orbitally shaken bioreactors, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 292.
Ducci, A. and Weheliye, W., Orbitally shaken bioreactors–viscosity effects on flow characteristics, AIChE J., 2014, vol. 60, p. 3951.
Rodriguez, G., Weheliye, W., Anderlei, T., Micheletti, M., Yianneskis, M., and Ducci, A., Mixing time and kinetic energy measurements in a shaken cylindrical bioreactor, Chem. Eng. Res. Des., 2013, vol. 81, p. 331.
Rodriguez, G., Anderlei, T., Micheletti, M., Yianneskis, M., and Ducci, A., On the measurement and scaling of mixing time in orbitally shaken bioreactors, Biochem. Eng. J., 2014, vol. 82, pp. 10–21. doi 10.1016/j.bej.2013.10.021
Weheliye, W., Yianneskis, M., and Ducci, A., On the fluid dynamics of shaken bioreactors–flow characterization and transition, AIChE J., 2013, vol. 59, p. 334.
Zhang, X., Bürki, C.-A., Stettler, M., De Sanctis, D., Perrone, M., Discacciati, M., Parolini, N., DeJesus, M., Hacker, D.L., Quarteroni, A., and Wurm, F.M., Efficient oxygen transfer by surface aeration in shaken cylindrical containers for mammalian cell cultivation at volumetric scales up to 1000 L, Biochem. Eng. J., 2009, vol. 45, no. 1, p. 41.
Mule, G.M. and Kulkarni, A.A., Flow patterns generated by fractal impeller in a stirred tank, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 252.
Kulkarni, A.A., et al., Fractal impeller for stirred tank reactors, Ind. Eng. Chem. Res., 2011, vol. 50, no. 12, p. 7667.
Mihailova, O., O’Sullivan, D., and Bakalis, S., Characterization of velocity fields in SMX static mixers using PEPT, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 228.
Ojala, L.S., Uusi-Kyyny, P., and Alopaeus, V., Prototyping a calorimeter mixing cell with direct metal laser sintering, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 264.
Marcos Ortega, S., Kilzer, A., Kareth, S., and Petermann, M., Process intensification by pressure enforced mixing technologies, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 269.
Strumendo, M., Bertucco, A., and Elvassore, N., Modeling of particle formation processes using gas saturated solution atomization, J. Supercrit. Fluids, 2007, vol. 41, no. 1, pp. 115–125. doi 10.1016/j.supflu. 2006.09.003
Hanu, L.G., Manufacturing and characterization of water filled microcomposites obtained by the PGSS process, PhD Dissertation, Bochum: Ruhr-Universität Bochum, 2010.
Özcan-Taşkın, G.N., Padron, G.A., and Kubicki, D., Comparative performance of in-line rotor-stators for deagglomeration processes, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 275.
Özcan-Taşkın, G., Padron, G., and Kubicki, D., Power and flow characteristics of three in-line rotor-stators, Can. J. Chem. Eng., 2011, vol. 89, no. 5, p. 1005.
Promtov, M., Stepanov, A., Aleshin, A., and Kolesnikova, M., Intensification of humic acid extraction by pulse flow of vermicompost slurry, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 315.
Fonte, C., Addison, T., Utomo, A., and Özcan-Taşkın, G., Modelling of the breakup process of nanoparticle agglomerates in energy intensive process devices, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 122.
Abiev, R.S., Modern state and perspectives of micro technique application in chemical industry, Russ. J. Gen. Chem., 2012, vol. 82, no. 12, p. 2019.
Bauer, T., Schubert, M., Lange, R., and Abiev, R.Sh., Intensification of heterogeneous catalytic gas-fluid interactions in reactors with a multichannel monolithic catalyst, Russ. J. Appl. Chem., 2006, vol. 79, no. 7, pp. 1047–1056. doi 10.1134/S107042720607019
Li, Y., Wengerter, M., Gerken, I., Nieder, H., Scholl, S., and Brandner, J.J., Development of an efficient emulsification process using miniaturized process engineering equipment, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 7.
Belousov, K.I., Kukhtevich, I.V., Bukatin, A.S., and Evstrapov, A.A., Simulation of mixing within a droplet during its formation in various designs of microfluidic chip, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 57.
Domínguez, C.C. and Gamse, T., Process intensification of liquid fractionation with supercritical fluids by use of micro devices, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 63.
Domínguez, C.C. and Gamse, T., Process intensification by the use of micro devices for liquid fractionation with supercritical carbon dioxide, Chem. Eng. Res. Des., 2016, vol. 108, pp. 139–145. doi 10.1016/j.cherd.2016.01.011
Dymov, A.V. and Abiev, R.Sh., Heat transfer intensification by Taylor mixing in two phase gas-liquid flow in mini and micro channels, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 111.
Abiev, R.Sh. and Lavretsov, I.V., Intensification of mass transfer from liquid to capillary wall by Taylor vortices in minichannels, bubble velocity and pressure drop, Chem. Eng. Sci., 2012, vol. 74, p. 59.
Svetlov, S.D. and Abiev, R.Sh., Mass transfer in Taylor flow in microchannels: Modelling of convection effects, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 333.
Abiev, R.Sh., Circulation and bypass modes of the slug flow of a gas-liquid mixture in capillaries, Theor. Found. Chem. Eng., 2009, vol. 43, no. 3, pp. 298–306. doi 10.1134/S0040579509030099
Hirata, Y. and Ohkawa, K., Development of channel mixers utilizing 180-degree fluid rotation combined with split and superposition, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 146.
Khalde, C.M., Kulkarni, A.A., and Ranade, V.V., CFD simulations of axial mixing in AMAR micro-mixer cum reactor, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 187.
Viktorov, V., Mahmud, M.R., and Visconte, C., Development and comparative analysis of a new c-h split and recombine micromixer, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 362.
Gonçalves, N.D., Fonte, C.P., Dias, M.M., Lopes, J.C., and Santos, R.J., Mixing in CIJS: Inducing resonant states with 2D turbulent active mixing, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 22.
Nunesa, M.I., Santos, R.J., Dias, M.M., and Lopes, J.C.B., Micromixing assessment of confined impinging jet mixers used in rim, Chem. Eng. Sci., 2012, vol. 74, p. 276.
Fonte, C.P., Sultan, M.A., Santos, R.J., Dias, M.M., and Lopes, J.C.B., Flow imbalance and Reynolds number impact on mixing in confined impinging jets, Chem. Eng. J., 2015, vol. 260, p. 316.
Hessel, V., Löwe, H., Müller, A., and Kolb, G., Chemical Micro Process Engineering: Processing and Plants, Weinheim: Wiley-VCH, 2005.
Wojtas, K. and Makowski, Ł., Large eddy simulation of precipitation process carried out in jet reactors, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 388.
Bałdyga, J. and Bourne, J.R., Turbulent Mixing and Chemical Reactions, Chichester: Wiley, 1999.
Bałdyga, J., Turbulent mixer model with application to homogeneous, instantaneous chemical reactions, Chem. Eng. Sci., 1989, vol. 44, p. 1175.
Dherbecourt, D., Charton, S., Lamadie, F., Cazin, S., and Climent, E., Experimental study of enhanced mixing induced by particles in Taylor-Couette flows, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 93.
Ostrovskii, G.M. and Abiev, R.Sh., Pulsation and resonance equipment for processes in liquid-phase media, Khim. Prom-st., 1998, no. 8, p. 468.
Abiev, R.Sh., New-generation pulsation apparatuses: Energy-and resource-saving equipment for chemical production, Khim. Prom-st. Segodnya, 2008, no. 4, p. 46.
Abiev, R.Sh., Study and industrial testing of pulsation and resonance apparatuses for the processing of liquid–capillary-porous particles systems, Khim. Prom-st., 2003, vol. 80, no. 7, p. 21.
Abiev, R.Sh. and Vasilev, M.P., Energy dissipation rate by pulsating flow type apparatus and droplet dispersion, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 28.
Galushko, A.S. and Abiev, R.Sh., Study of the hydrodynamics of a gas–liquid mixture in a pulsating flowtype apparatus, Vestn. Kazan. Tekhnol. Univ., 2008, no. 6, p. 199.
Abiev, R.Sh. and Galushko, A.S., Hydrodynamics of pulsating flow type apparatus: Simulation and experiments, Chem. Eng. J., 2013, vol. 229, p. 285.
Abiev, R.Sh., Intensification of the purification of industrial wastewater in a pulsating flow-type apparatus, Izv. S.-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2012, no. 13 (39), p. 82.
Dolinskii, A.A. and Ivanitskii, G.K., Teplomassoobmen i gidrodinamika v parozhidkostnykh sredakh. Teplofizicheskie osnovy diskretno-impul’snogo vvoda energii (Heat and Mass Transfer and Hydrodynamics in Vapor–Liquid Media: Thermophysical Foundations of Discrete Pulsed Energy Input), Kyiv: Naukova Dumka, 2008.
Abiev, R.Sh. and Vasilev, M.P., Pulsating flow type apparatus: Energy dissipation rate and droplets dispersion, Chem. Eng. Res. Des., 2016, vol. 108, p. 101.
Abiev, R.Sh., Vasilev, M.P., and Doil’nitsyn, V.A., Study of the vacuum degassing of water using a vortex jet apparatus, Izv. S.-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2015, no. 28 (54), p. 64.
Abiev, R.Sh., Nekrasov, V.A., and Panova, D.D., The use of a vortex jet apparatus as a foam generator in the production of foam concrete, Izv. S.-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2012, no. 14 (40), p. 67.
Abiev, R.Sh., RF Patent 2261139, Byull. Izobret., 2005, no. 27.
Abiev, R.Sh., RF Patent 2262008, Byull. Izobret., 2005, no. 28.
Abiev, R.Sh., RF Patent 2296007, Byull. Izobret., 2007, no. 9.
Hanada, T., Sawamoto, T., and Takahashi, K., In-line mixing for high reactive species using swirl flow ejector, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 140.
Casassa, E.Z., Sarquis, M., and Van Dyke, C.H., The gelation of polyvinyl alcohol with borax, J. Chem. Educ., 1986, vol. 63, no. 1, p. 57.
Pacek, A.W. and Ping, D., De-agglomeration of nanopowders in high shear mixer and in ultrasound dispersing device, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 281.
Costa, M.F., Fonte, C.M., Dias, M.M., and Lopes, J.C.B., The NETMIX® reactor: Heat transfer enhancement, Proc. 15th European Conference on Mixing (St. Petersburg, 2015), St. Petersburg: Saint-Petersburg State Inst. of Technology (Technical Univ.), 2015, p. 70.
Laranjeira, P.E., Martins, A.A., Lopes, J.C.B., and Dias, M.M., NETmix®, a new type of static mixer: Modeling, simulation, macromixing, and micromixing characterization, AIChE J., 2009, vol. 55, no. 9, pp. 2226–2243. doi 10.1002/aic.11815