Theoretical tuning of Ruddlesden–Popper type anti-perovskite phases as superb ion conductors and cathodes for solid sodium ion batteries

Journal of Materials Chemistry A - Tập 7 Số 17 - Trang 10483-10493
Jing Lan1,2,3,4,5, Zhuo Wang1,2,3,4,5, Guosheng Shao1,2,3,4,5
1China
2State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, China
3Zhengzhou 450001
4Zhengzhou Materials Genome Institute (ZMGI)
5Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang 450100, China.

Tóm tắt

It is very important and yet extremely challenging to develop solid-state electrolytes for safe sodium ion batteries, largely due to sodium ions being significantly larger than lithium ones.

Từ khóa


Tài liệu tham khảo

Armand, 2008, Nature, 451, 652, 10.1038/451652a

Dunn, 2011, Science, 334, 928, 10.1126/science.1212741

Scrosati, 2011, Energy Environ. Sci., 4, 3287, 10.1039/c1ee01388b

Palomares, 2012, Energy Environ. Sci., 5, 5884, 10.1039/c2ee02781j

Eftekhari, 2004, J. Power Sources, 126, 221, 10.1016/j.jpowsour.2003.08.007

Fan, 2017, Adv. Energy Mater., 7, 1700317, 10.1002/aenm.201700317

Wang, 2018, J. Mater. Chem. A, 6, 6830, 10.1039/C8TA01050A

Zhang, 2015, Adv. Energy Mater., 5, 1400930, 10.1002/aenm.201400930

Nitta, 2015, Mater. Today, 18, 252, 10.1016/j.mattod.2014.10.040

Tatsumisago, 2013, J. Asian Ceram. Soc., 1, 17, 10.1016/j.jascer.2013.03.005

Takada, 2013, Acta Mater., 61, 759, 10.1016/j.actamat.2012.10.034

Wang, 2012, J. Power Sources, 208, 210, 10.1016/j.jpowsour.2012.02.038

C. Julien and G. A.Nazri , Solid State Batteries: Materials Design and Optimization , Springer US , 1994

Lu, 2018, Joule, 2, 1, 10.1016/j.joule.2018.07.028

Hwang, 2017, Chem. Soc. Rev., 46, 3529, 10.1039/C6CS00776G

Yu, 2018, J. Mater. Chem. A, 6, 19843, 10.1039/C8TA08412B

Kuhn, 2013, Energy Environ. Sci., 6, 3548, 10.1039/c3ee41728j

Wang, 2017, J. Mater. Chem. A, 5, 21846, 10.1039/C7TA06986C

Richards, 2016, Nat. Commun., 7, 11009, 10.1038/ncomms11009

Zhang, 2018, Energy Environ. Sci., 11, 87, 10.1039/C7EE03083E

Wenzel, 2016, Chem. Mater., 28, 2400, 10.1021/acs.chemmater.6b00610

Hayashi, 2014, J. Power Sources, 258, 420, 10.1016/j.jpowsour.2014.02.054

Hayashi, 2012, Nat. Commun., 3, 856, 10.1038/ncomms1843

Bo, 2016, Chem. Mater., 28, 252, 10.1021/acs.chemmater.5b04013

Zhang, 2015, Adv. Energy Mater., 5, 1501294, 10.1002/aenm.201501294

Wang, 2016, Angew. Chem., 128, 8693, 10.1002/ange.201601546

Banerjee, 2016, Angew. Chem., 128, 9634, 10.1002/anie.201604158

Zhu, 2015, ACS Appl. Mater. Interfaces, 7, 23685, 10.1021/acsami.5b07517

Wang, 2015, J. Power Sources, 293, 735, 10.1016/j.jpowsour.2015.06.002

Sabrowsky, 1990, Acta Crystallogr., 46, 368

Sabrowsky, 1989, Z. Naturforsch., B: J. Chem. Sci., 44, 373, 10.1515/znb-1989-0321

Zhu, 2016, Inorg. Chem., 55, 5993, 10.1021/acs.inorgchem.6b00444

Wang, 2018, J. Mater. Chem. A, 6, 73, 10.1039/C7TA08698A

Wang, 2018, J. Phys. Chem. C, 122, 2589, 10.1021/acs.jpcc.7b11849

Xuan, 2018, J. Mater. Chem. A, 6, 19231, 10.1039/C8TA07240J

Kresse, 1993, Phys. Rev. B: Condens. Matter Mater. Phys., 47, 558, 10.1103/PhysRevB.47.558

Kresse, 1994, Phys. Rev. B: Condens. Matter Mater. Phys., 49, 14251, 10.1103/PhysRevB.49.14251

Blöchl, 1994, Phys. Rev. B: Condens. Matter Mater. Phys., 50, 17953, 10.1103/PhysRevB.50.17953

Kresse, 1999, Phys. Rev. B: Condens. Matter Mater. Phys., 59, 1758, 10.1103/PhysRevB.59.1758

Kresse, 1993, Phys. Rev. B: Condens. Matter Mater. Phys., 48, 13115, 10.1103/PhysRevB.48.13115

Perdew, 1996, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Shao, 2009, J. Phys. Chem. C, 113, 6800, 10.1021/jp810923r

Shao, 2008, J. Phys. Chem. C, 112, 18677, 10.1021/jp8043797

Han, 2013, J. Mater. Chem. C, 1, 3736, 10.1039/c3tc30370e

Han, 2015, J. Mater. Chem. C, 3, 530, 10.1039/C4TC02120G

Heyd, 2003, J. Chem. Phys., 118, 8207, 10.1063/1.1564060

Heyd, 2006, J. Chem. Phys., 124, 219906, 10.1063/1.2204597

Oganov, 2006, J. Chem. Phys., 124, 244704, 10.1063/1.2210932

Glass, 2006, Comput. Phys. Commun., 175, 713, 10.1016/j.cpc.2006.07.020

Parlinski, 1997, Phys. Rev. Lett., 78, 4063, 10.1103/PhysRevLett.78.4063

Togo, 2008, Phys. Rev. B: Condens. Matter Mater. Phys., 78, 134106, 10.1103/PhysRevB.78.134106

Huan, 2016, Phys. Rev. B, 93, 094105, 10.1103/PhysRevB.93.094105

Brivio, 2015, Phys. Rev. B: Condens. Matter Mater. Phys., 92, 144308, 10.1103/PhysRevB.92.144308

Deng, 2017, Chem. Mater., 29, 281, 10.1021/acs.chemmater.6b02648

Agnihotri, 2014, J. Phys. Chem. B, 118, 8170, 10.1021/jp5012523

Zhao, 2018, J. Mater. Chem. A, 6, 2625, 10.1039/C7TA08968F

Hart, 2008, Phys. Rev. B: Condens. Matter Mater. Phys., 77, 224115, 10.1103/PhysRevB.77.224115

Walle, 2002, J. Phase Equilib., 23, 348, 10.1361/105497102770331596

Ong, 2013, Energy Environ. Sci., 6, 148, 10.1039/C2EE23355J

Braga, 2014, J. Mater. Chem. A, 2, 5470, 10.1039/C3TA15087A

Zhu, 2016, J. Mater. Chem. A, 4, 3253, 10.1039/C5TA08574H

Liang, 2018, Energy Environ. Mater., 1, 221, 10.1002/eem2.12022

Takeguchi, 2013, J. Am. Chem. Soc., 135, 11125, 10.1021/ja403476v

Schaak, 2002, Chem. Mater., 14, 1455, 10.1021/cm010689m

Zhang, 2013, Phys. Rev. B: Condens. Matter Mater. Phys., 87, 134303, 10.1103/PhysRevB.87.134303

Huang, 2018, Chem. Mater., 30, 4728, 10.1021/acs.chemmater.8b01556

Du, 2016, Energy Environ. Sci., 9, 2575, 10.1039/C6EE01367H

Tian, 2017, Energy Environ. Sci., 10, 1150, 10.1039/C7EE00534B

Tian, 2019, Joule, 10.1016/j.joule.2018.12.019

Xu, 2019, J. Mater. Chem. A, 7, 5239, 10.1039/C8TA11151K

Liu, 2019, J. Power Sources, 409, 94, 10.1016/j.jpowsour.2018.10.077