Theoretical study of optical rectification of a nanostructure inside an ideal photonic crystal cavity

Physica B: Condensed Matter - Tập 618 - Trang 413200 - 2021
D.A. Rasero1,2, A.A. Portacio3, P. Villamil2, B.A. Rodríguez4
1Departamento de Ciencias Naturales, Grupo de Física Aplicada FIASUR, Universidad Surcolombiana, A.A 385, Neiva, Colombia
2Universidad de Sucre, Departamento de Física, Facultad de Educación y Ciencias, Sincelejo, Colombia
3Universidad de los Llanos, Facultad de Ciencias Básicas e Ingeniería, Villavicencio, Colombia
4Instituto de Física, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia

Tài liệu tham khảo

Vahala, 2003, Optical microcavities, Nature, 424, 839, 10.1038/nature01939 Pelton, 2015, Modified spontaneous emission in nanophotonic structures, Nature Photon, 9, 427, 10.1038/nphoton.2015.103 Reithmaier, 2004, Strong coupling in a single quantum dot-semiconductor microcavity system, Nature, 432, 197, 10.1038/nature02969 Yoshie, 2004, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature, 432, 200, 10.1038/nature03119 Khitrova, 2006, Vacuum rabi splitting in semiconductor, Nat. Phys., 2, 81, 10.1038/nphys227 Laussy, 2008, Strong coupling of quantum dots in microcavities, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.083601 Kockum, 2019, Ultrastrong coupling between light and matter, Nat. Rev. Phys., 1, 19, 10.1038/s42254-018-0006-2 Sekoguchi, 2014, Photonic crystal nanocavity with a Q-factor of ∼9 million, Opt. Express, 22, 916, 10.1364/OE.22.000916 Asano, 2017, Photonic crystal nanocavity with a Q factor exceeding eleven million, Opt. Express, 25, 1769, 10.1364/OE.25.001769 Simbula, 2017, Realization of high-Q∕V photonic crystalcavities defined by an effective Aubry-André-Harper bichromatic potential, APL Photonics, 2, 10.1063/1.4979708 Michler, 2000, Quantum correlation among photons from a single quantum dot at room temperature, Nature, 406, 968, 10.1038/35023100 Lounis, 2005, Single-photon sources, Rep. Progr. Phys., 68, 1129, 10.1088/0034-4885/68/5/R04 Ursin, 2007, Entanglement-based quantum communication over 144 km, Nat. Phys., 3, 481, 10.1038/nphys629 2017 Troiani, 2006, Cavity-assisted generation of entangled photon pairs by a quantum-dot cascade decay, Phys. Rev. B, 74, 10.1103/PhysRevB.74.235310 Allevi, 2017, Antibunching-like behavior of mesoscopic light, Sci. Rep., 7, 16787, 10.1038/s41598-017-16773-9 Peřina, 2019, Simultaneous observation of higher-order non-classicalities based on experimental photocount moments and probabilities, Sci. Rep., 9, 8961, 10.1038/s41598-019-45215-x Paspalakis, 2013, Effects of probe field intensity in nonlinear optical processes in asymmetric semiconductor quantum dots, J. Appl. Phys., 114, 10.1063/1.4825320 Portacio, 2017, Non-linear optical response of an impurity in a cylindrical quantum dot under the action of a magnetic field, Physica B, 511, 68, 10.1016/j.physb.2017.02.008 Portacio, 2018, Influence of the position of a donor impurity on the second-order nonlinear optical susceptibility in a cylindrical quantum dot, Superlattices Microstruct., 113, 550, 10.1016/j.spmi.2017.11.041 Evangelou, 2021, Comment on “Tunability of linear and nonlinear optical absorption in laterally coupled AlxGa1−xAs/GaAs quantum wires”, J. Alloys Compd., 850, 10.1016/j.jallcom.2020.156302 Liu, 2013, Polaron effects on the optical rectification and the second harmonic generation in cylindrical quantum dots with magnetic field, Superlattices Microstruct., 53, 173, 10.1016/j.spmi.2012.09.007 Shao, 2011, Third-harmonic generation in cylindrical quantum dots in a static magnetic field, Solid State Commun., 151, 289, 10.1016/j.ssc.2010.12.003 Liu, 2008, Theoretical study of the optical absorption and refraction index change in a cylindrical quantum dot, Phys. Lett. A, 372, 888, 10.1016/j.physleta.2007.08.046 Bass, 1962, Optical rectification, Phys. Rev. Lett., 9, 446, 10.1103/PhysRevLett.9.446 Saleh, 2007 Akbari, 2015, Photo-induced voltage in nano-porous gold thin film, Opt. Express, 23, 823, 10.1364/OE.23.000823 Obraztsov, 2006, Optical rectification effect in nano-carbon CVD films, Diam. Relat. Mater., 15, 842, 10.1016/j.diamond.2005.10.023 Rezaei, 2014, Optical rectification coefficient of a two-dimensional parabolic quantum dot: Effects of hydrogenic impurity, external fields, hydrostatic pressure and temperature, Physica B, 451, 1, 10.1016/j.physb.2014.06.008 Xie, 2011, The nonlinear optical rectification of a confined exciton in a quantum dot, J. Lumin., 131, 943, 10.1016/j.jlumin.2010.12.028 Li, 2014, Nonlinear optical rectification in asymmetric quantum dots with an external static magnetic field, Physica E, 56, 130, 10.1016/j.physe.2013.08.025 Portacio, 2019, Theoretical study on optical response in nanostructures in the Born-Markov regime: The role of spontaneous emission and dephasing, Ann. Physics, 400, 279, 10.1016/j.aop.2018.11.023 Gerry, 2005 Allen, 1987 Boyd, 2007