Theoretical studies on the kinetics and mechanism of multi-channel gas-phase unimolecular reaction of ethyl acetate
Tóm tắt
Từ khóa
Tài liệu tham khảo
Knothe, 1998, Precombustion of fatty acids and esters of biodiesel. A possible explanation for differing cetane numbers, J. Am. Oil Chem. Soc., 75, 1007, 10.1007/s11746-998-0279-1
Metcalfe, 2007, Experimental and modeling study of C5H10O2 ethyl and methyl esters, J. Phys. Chem. A, 111, 4001, 10.1021/jp067582c
El-Nahas, 2010, Structures and energetics of unimolecular thermal degradation of isopropyl butanoate as a model biofuel: density functional theory and ab initio studies, J. Phys. Chem. A, 114, 7996, 10.1021/jp103397f
Blades, 1954, The kinetics of the pyrolysis of ethyl and isopropyl formates and acetates, Can. J. Chem., 32, 366, 10.1139/v54-049
Blades, 1960, The secondary hydrogen isotope effects in the pyrolysis of ethyl-d5 acetate and ethyl acetate-d3, Can. J. Chem., 38, 1407, 10.1139/v60-196
Louw, 1965, Thermolytic reactions of esters: Part I. Allyl acetate, Recueil, 84, 1511, 10.1002/recl.19650841115
Kwart, 1969, Homogeneous gas-phase thermolysis kinetics. An improved flow technique for direct study of rate processes in the gas phase, J. Phys. Chem., 73, 4056, 10.1021/j100846a005
Beadle, 1972, Very low-pressure pyrolysis: VI. The decomposition of ethyl acetate, Int. J. Chem. Kinet., 4, 265, 10.1002/kin.550040303
Taylor, 1975, The nature of the transition state in ester pyrolysis: Part II. The relative rates of pyrolysis of ethyl, isopropyl, and t-butyl acetates, phenylacetates, benzoates, phenyl carbonates, and N-phenylcarbamates, J. Chem. Soc. Perkin Trans., 2, 1025, 10.1039/p29750001025
DeBurgh Norfolk, 1976, The mechanism of the gas-phase pyrolysis of esters: Part IV. Effects of substituents at the «beta»-carbon atom, J. Chem. Soc. Perkin Trans., 2, 280, 10.1039/P29760000280
Eaborn, 1982, The mechanism of the gas-phase pyrolysis of esters: Part 13. The very strong activating effects of «beta»-trialkylmetal groups, J. Chem. Soc. Perkin Trans., 2, 1313, 10.1039/P29820001313
Gill, 1990, The mechanism of thermal eliminations: Part 27. Steric acceleration in pyrolysis of 3,3,3-tris(trimethylsilyl)propyl acetate, J. Chem. Soc. Perkin Trans., 2, 1715, 10.1039/p29900001715
Gutman, 1977, Comparison of the thermal and infrared laser induced unimolecular decompositions of allylmethylether, ethylacetate, and isopropylbromide, J. Chem. Phys., 67, 4291, 10.1063/1.435368
Zitter, 1980, Activation energies from CW laser induced reactions, Chem. Phys., 46, 107, 10.1016/0301-0104(80)85087-7
Keller, 1982, Kinetische Untersuchung der Thermischen Nachverbrennung von Essigsaeureethylester in einem Stroemungsrohr-Reaktor, Chemie Ingenieur Technik, 54, 1079, 10.1002/cite.330541125
McMillen, 1982, Laser-powered homogeneous pyrolysis. thermal studies under homogeneous conditions, validation of the technique, and application to the mechanism of azo compound decomposition, J. Phys. Chem., 86, 709, 10.1021/j100394a025
Louw, 1983, Thermolytic reactions of esters: Part XIII. The effect of electron attracting «alpha»-substituents in alkyl acetates, Rec. Trav. Chim. Pays/Bas, 102, 519, 10.1002/recl.19831021206
Saito, 1990, Thermal decomposition of ethyl acetate. Branching ratio of the competing paths in the pyrolysis of the produced acetic acid, Chem. Phys. Lett., 170, 385, 10.1016/S0009-2614(90)87038-S
Swihart, 1996, Pulsed laser powered homogeneous pyrolysis for reaction kinetics studies: probe laser measurement of reaction time and temperature, Int. J. Chem. Kinet., 28, 817, 10.1002/(SICI)1097-4601(1996)28:11<817::AID-KIN4>3.0.CO;2-Q
Gaussian 09, Revision A.1, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian Inc., Wallingford, CT, 2009.
Møller, 1934, Note on an approximation treatment for many-electron systems, Phys. Rev., 46, 618, 10.1103/PhysRev.46.618
Raghavachari, 1989, A fifth-order perturbation comparison of electron correlation theories, Chem. Phys. Lett., 157, 479, 10.1016/S0009-2614(89)87395-6
Montgomery, 1999, A complete basis set model chemistry: VI. Use of density functional geometries and frequencies, J. Chem. Phys., 110, 2822, 10.1063/1.477924
Zhao, 2004, Development and assessment of a new hybrid density functional model for thermochemical kinetics, J. Phys. Chem. A, 108, 2715, 10.1021/jp049908s
Lynch, 2003, Effectiveness of diffuse basis functions for calculating relative energies by density functional theory, J. Phys. Chem. A, 107, 1384, 10.1021/jp021590l
Gonzalez, 1990, Reaction path following in mass-weighted internal coordinates, J. Phys. Chem., 94, 5523, 10.1021/j100377a021
Kendall, 1992, Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions, electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions, J. Chem. Phys., 96, 6796, 10.1063/1.462569
Holbrook, 1996
Gilbert, 1990
Whitten, 1963, Accurate and facile approximation for vibrational energy-level sums, J. Chem. Phys., 38, 2466, 10.1063/1.1733526
Troe, 1977, Theory of thermal unimolecular reactions at low pressures: I. Solutions of the master equation, J. Chem. Phys., 66, 4745, 10.1063/1.433837
Oref, 1992, Correlations of values of average energy transfer from highly excited polyatomic molecules with heats of vaporization and boiling temperatures, J. Phys. Chem., 96, 6308, 10.1021/j100194a039
Tweedale, 1970, Vibrationally adiabatic model for the dynamics of H+H2 systems, J. Chem. Phys., 53, 2045, 10.1063/1.1674286
Isaacson, 1982, Polyatomic canonical variational theory for chemical reaction rates. Separable-mode formalism with application to OH+H2→H2O+H, J. Chem. Phys., 76, 1380, 10.1063/1.443130
Garrett, 1979, Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules, J. Phys. Chem., 83, 1052, 10.1021/j100471a031
Garrett, 1979, Correction-generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules, J. Phys. Chem., 83
Garrett, 1983, Additions and corrections-generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules, J. Phys. Chem., 87
Garrett, 1979, Generalized transition state theory. Bond energy-bond order method for canonical variational calculations with application to hydrogen atom transfer reactions, J. Am. Chem. Soc., 101, 4534, 10.1021/ja00510a019
Eckart, 1930, The penetration of a potential barrier by electrons, Phys. Rev., 35, 1303, 10.1103/PhysRev.35.1303
Johnston, 1966
Lee, 1989, A diagnostic for determining the quality of single-reference electron correlation methods, Int. J. Quantum Chem., Quant. Chem. Symp., S23, 199
Zhu, 1993