Theoretical studies on the kinetics and mechanism of multi-channel gas-phase unimolecular reaction of ethyl acetate

Computational and Theoretical Chemistry - Tập 1009 - Trang 43-49 - 2013
Vahid Saheb1, S. Mohammad Ali Hosseini1
1Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Knothe, 1998, Precombustion of fatty acids and esters of biodiesel. A possible explanation for differing cetane numbers, J. Am. Oil Chem. Soc., 75, 1007, 10.1007/s11746-998-0279-1

Metcalfe, 2007, Experimental and modeling study of C5H10O2 ethyl and methyl esters, J. Phys. Chem. A, 111, 4001, 10.1021/jp067582c

El-Nahas, 2010, Structures and energetics of unimolecular thermal degradation of isopropyl butanoate as a model biofuel: density functional theory and ab initio studies, J. Phys. Chem. A, 114, 7996, 10.1021/jp103397f

Blades, 1954, The kinetics of the pyrolysis of ethyl and isopropyl formates and acetates, Can. J. Chem., 32, 366, 10.1139/v54-049

Blades, 1960, The secondary hydrogen isotope effects in the pyrolysis of ethyl-d5 acetate and ethyl acetate-d3, Can. J. Chem., 38, 1407, 10.1139/v60-196

Scheer, 1963, Gas phase pyrolysis of alkyl acetates, Recueil, 82, 1123, 10.1002/recl.19630821118

Louw, 1965, Thermolytic reactions of esters: Part I. Allyl acetate, Recueil, 84, 1511, 10.1002/recl.19650841115

Kwart, 1969, Homogeneous gas-phase thermolysis kinetics. An improved flow technique for direct study of rate processes in the gas phase, J. Phys. Chem., 73, 4056, 10.1021/j100846a005

Beadle, 1972, Very low-pressure pyrolysis: VI. The decomposition of ethyl acetate, Int. J. Chem. Kinet., 4, 265, 10.1002/kin.550040303

Taylor, 1975, The nature of the transition state in ester pyrolysis: Part II. The relative rates of pyrolysis of ethyl, isopropyl, and t-butyl acetates, phenylacetates, benzoates, phenyl carbonates, and N-phenylcarbamates, J. Chem. Soc. Perkin Trans., 2, 1025, 10.1039/p29750001025

DeBurgh Norfolk, 1976, The mechanism of the gas-phase pyrolysis of esters: Part IV. Effects of substituents at the «beta»-carbon atom, J. Chem. Soc. Perkin Trans., 2, 280, 10.1039/P29760000280

Eaborn, 1982, The mechanism of the gas-phase pyrolysis of esters: Part 13. The very strong activating effects of «beta»-trialkylmetal groups, J. Chem. Soc. Perkin Trans., 2, 1313, 10.1039/P29820001313

Gill, 1990, The mechanism of thermal eliminations: Part 27. Steric acceleration in pyrolysis of 3,3,3-tris(trimethylsilyl)propyl acetate, J. Chem. Soc. Perkin Trans., 2, 1715, 10.1039/p29900001715

Gutman, 1977, Comparison of the thermal and infrared laser induced unimolecular decompositions of allylmethylether, ethylacetate, and isopropylbromide, J. Chem. Phys., 67, 4291, 10.1063/1.435368

Zitter, 1980, Activation energies from CW laser induced reactions, Chem. Phys., 46, 107, 10.1016/0301-0104(80)85087-7

Keller, 1982, Kinetische Untersuchung der Thermischen Nachverbrennung von Essigsaeureethylester in einem Stroemungsrohr-Reaktor, Chemie Ingenieur Technik, 54, 1079, 10.1002/cite.330541125

McMillen, 1982, Laser-powered homogeneous pyrolysis. thermal studies under homogeneous conditions, validation of the technique, and application to the mechanism of azo compound decomposition, J. Phys. Chem., 86, 709, 10.1021/j100394a025

Louw, 1983, Thermolytic reactions of esters: Part XIII. The effect of electron attracting «alpha»-substituents in alkyl acetates, Rec. Trav. Chim. Pays/Bas, 102, 519, 10.1002/recl.19831021206

Saito, 1990, Thermal decomposition of ethyl acetate. Branching ratio of the competing paths in the pyrolysis of the produced acetic acid, Chem. Phys. Lett., 170, 385, 10.1016/S0009-2614(90)87038-S

Swihart, 1996, Pulsed laser powered homogeneous pyrolysis for reaction kinetics studies: probe laser measurement of reaction time and temperature, Int. J. Chem. Kinet., 28, 817, 10.1002/(SICI)1097-4601(1996)28:11<817::AID-KIN4>3.0.CO;2-Q

Gaussian 09, Revision A.1, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian Inc., Wallingford, CT, 2009.

Møller, 1934, Note on an approximation treatment for many-electron systems, Phys. Rev., 46, 618, 10.1103/PhysRev.46.618

Raghavachari, 1989, A fifth-order perturbation comparison of electron correlation theories, Chem. Phys. Lett., 157, 479, 10.1016/S0009-2614(89)87395-6

Montgomery, 1999, A complete basis set model chemistry: VI. Use of density functional geometries and frequencies, J. Chem. Phys., 110, 2822, 10.1063/1.477924

Zhao, 2004, Development and assessment of a new hybrid density functional model for thermochemical kinetics, J. Phys. Chem. A, 108, 2715, 10.1021/jp049908s

Zhao, 2008, Theory Chem. Acc., 120, 215, 10.1007/s00214-007-0310-x

Lynch, 2003, Effectiveness of diffuse basis functions for calculating relative energies by density functional theory, J. Phys. Chem. A, 107, 1384, 10.1021/jp021590l

Gonzalez, 1990, Reaction path following in mass-weighted internal coordinates, J. Phys. Chem., 94, 5523, 10.1021/j100377a021

Kendall, 1992, Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions, electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions, J. Chem. Phys., 96, 6796, 10.1063/1.462569

Holbrook, 1996

Gilbert, 1990

Whitten, 1963, Accurate and facile approximation for vibrational energy-level sums, J. Chem. Phys., 38, 2466, 10.1063/1.1733526

Troe, 1977, Theory of thermal unimolecular reactions at low pressures: I. Solutions of the master equation, J. Chem. Phys., 66, 4745, 10.1063/1.433837

Oref, 1992, Correlations of values of average energy transfer from highly excited polyatomic molecules with heats of vaporization and boiling temperatures, J. Phys. Chem., 96, 6308, 10.1021/j100194a039

Tweedale, 1970, Vibrationally adiabatic model for the dynamics of H+H2 systems, J. Chem. Phys., 53, 2045, 10.1063/1.1674286

Isaacson, 1982, Polyatomic canonical variational theory for chemical reaction rates. Separable-mode formalism with application to OH+H2→H2O+H, J. Chem. Phys., 76, 1380, 10.1063/1.443130

Garrett, 1979, Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules, J. Phys. Chem., 83, 1052, 10.1021/j100471a031

Garrett, 1979, Correction-generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules, J. Phys. Chem., 83

Garrett, 1983, Additions and corrections-generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules, J. Phys. Chem., 87

Garrett, 1979, Generalized transition state theory. Bond energy-bond order method for canonical variational calculations with application to hydrogen atom transfer reactions, J. Am. Chem. Soc., 101, 4534, 10.1021/ja00510a019

Eckart, 1930, The penetration of a potential barrier by electrons, Phys. Rev., 35, 1303, 10.1103/PhysRev.35.1303

Johnston, 1966

Lee, 1989, A diagnostic for determining the quality of single-reference electron correlation methods, Int. J. Quantum Chem., Quant. Chem. Symp., S23, 199

Zhu, 1993