Theoretical studies of the structure and function of MAO (methylaluminoxane)

Progress in Polymer Science - Tập 29 - Trang 107-148 - 2004
Eva Zurek1, Tom Ziegler1
1Department of Chemistry, University of Calgary, Calgary, Alta., Canada T2N 1N4

Tài liệu tham khảo

Angermund, 2000, Toward quantitative prediction of stereospecificity of metallocene-based catalysts for α-olefin polymerization, Chem Rev, 100, 1457, 10.1021/cr990373m Coates, 2000, Precise control of polyolefin stereochemistry using single-site metal catalysts, Chem Rev, 100, 1223, 10.1021/cr990286u Chen, 2000, Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes and structure–activity relationships, Chem Rev, 100, 1391, 10.1021/cr980462j Rappé, 2000, Modeling metal-catalyzed olefin polymerization, Chem Rev, 100, 1435, 10.1021/cr9902493 Coates, 2002, Polymerization catalysis at the millennium: frontiers in stereoselective, metal-catalyzed polymerization, J Chem Soc—Dalton Trans, 4, 467, 10.1039/b111226k Sinn, 1980, Angew Chem, 92, 396, 10.1002/ange.19800920517 Sinn, 1980, Living polymers on polymerization with extremely productive Ziegler catalysts, Angew Chem Int Ed Engl, 19, 390, 10.1002/anie.198003901 Pédeutour, 2001, Reactivity of metallocene catalysts for olefin polymerization: influence of activator nature and structure, Macromol Rapid Commun, 22, 1095, 10.1002/1521-3927(20011001)22:14<1095::AID-MARC1095>3.0.CO;2-R Pasynkiewicz, 1990, Alumoxanes: synthesis, structures, complexes and reactions, Polyhedron, 9, 429, 10.1016/S0277-5387(00)80597-5 Atwood, 1983, Decomposition of high-oxygen content organoaluminum compounds. The formation and structure of the [Al7O6Me16]−anion, Organometallics, 2, 985, 10.1021/om50002a008 Mason, 1993, Hydrolysis of tri-tert-butylaluminum: the first structural characterization of alkylalumoxanes [(R2Al)2O]n and (RAlO)n, J Am Chem Soc, 115, 4971, 10.1021/ja00065a005 Harlan, 1994, tert-Butylaluminum hydroxides and oxides: structural relationship between alkylalumoxanes and alumina gels, Organometallics, 13, 2957, 10.1021/om00020a011 Harlan, 1995, Three-coordinate aluminum is not a prerequisite for catalytic activity in the zirconocene–alumoxane polymerization of ethylene, J Am Chem Soc, 117, 6465, 10.1021/ja00129a008 Koide, 1996, Reaction of amines with [(tBu)Al(μ3-O)]6: determination of the steric limitation of a latent Lewis acid, Organometallics, 15, 5514, 10.1021/om960677o Talsi, 1999, The metallocene/methylaluminoxane catalysts formation: EPR spin probe study of Lewis acidic sites of methylaluminoxane, J Mol Catal A: Chem, 139, 131, 10.1016/S1381-1169(98)00194-0 Babushkin, 1997, Multinuclear NMR investigation of methylaluminoxane, Macromol Chem Phys, 198, 3845, 10.1002/macp.1997.021981206 Sinn, 1995, Proposals for structure and effect of methylalumoxane based on mass balances and phase separation experiments, Macromol Symp, 97, 27, 10.1002/masy.19950970105 Tritto, 1996, Low-temperature 1H and 13C NMR investigation of trimethylaluminium contained in methylaluminoxane cocatalyst for metallocene-based catalysts in olefin polymerization, Macromol Chem Phys, 197, 1537, 10.1002/macp.1996.021970429 Barron, 1995, New method for the determination of the trialkylaluminum content in alumoxanes, Organometallics, 14, 3581, 10.1021/om00007a070 Imhoff, 1998, Characterization of methylaluminoxanes and determination of trimethylaluminum using proton NMR, Organometallics, 1941, 10.1021/om980046p Tritto, 1997, Methylaluminoxane: NMR analysis, cryoscopic measurements and cocatalytic ability in ethylene polymerization, Macromol Chem Phys, 198, 3963, 10.1002/macp.1997.021981215 Eilertsen, 2000, In situ FTIR spectroscopy during addition of trimethylaluminium (TMA) to methylaluminoxane (MAO) shows no formation of MAO–TMA compounds, Vib Spectrosc, 2, 257, 10.1016/S0924-2031(00)00093-X Watanabi, 2001, Reaction of trimethylaluminum with [(tBu)Al(μ3-O)]6: hybrid tert-butylmethylalumoxanes as cocatalysts for olefin polymerization, Organometallics, 20, 460, 10.1021/om000553i Tritto, 1997, Dimethylzirconocene–methylaluminoxane catalyst for olefin polymerization: NMR study of reaction equilibria, Macromolecules, 30, 1247, 10.1021/ma9608986 Tritto, 1999, Evidence of zircononium–polymeryl ion pairs from 13C NMR in situ 13C2H4 polymerization with Cp2Zr(13CH3)2-based catalysts, Macromolecules, 32, 264, 10.1021/ma981164r Tritto, 1995, Titanocene–methylaluminoxane catalysts for olefin polymerization: a 13C NMR study of the reaction equilibria and polymerization, Macromolecules, 28, 5358, 10.1021/ma00119a028 Tritto, 1994, NMR study of the reactions in Cp2TiMeCl/AlMe3 and Cp2TiMeCl/methylalumoxane systems, catalysts for olefin polymerization, Macromol Rapid Commun, 15, 217, 10.1002/marc.1994.030150306 Tritto, 1993, 1H and 13C NMR spectroscopic study of titanium metallocene–aluminoxane catalysts for olefin polymerizations, Macromolecules, 26, 7111, 10.1021/ma00078a001 Babushkin, 2000, Mechanism of dimethylzirconocene activation with methylaluminoxane: NMR monitoring of intermediates at high Al/Zr ratios, Macromol Chem Phys, 201, 558, 10.1002/(SICI)1521-3935(20000301)201:5<558::AID-MACP558>3.0.CO;2-N Siedle, 1998, Mechanism of olefin polymerization by a soluble zirconium catalyst, J Mol Catal A: Chem, 128, 257, 10.1016/S1381-1169(97)00179-9 Kaminsky, 1996, New polymers by metallocene catalysis, Macromol Chem Phys, 197, 3907, 10.1002/macp.1996.021971201 Fink, 2000, Propene polymerization with silica-supported metallocene/MAO catalysts, Chem Rev, 100, 1377, 10.1021/cr9804689 Zurek, 2001, Modeling the dynamic equilibrium between oligomers of (AlOCH3)n in methylaluminoxane (MAO). A theoretical study based on a combined quantum mechanical and statistical mechanical approach, Inorg Chem, 40, 361, 10.1021/ic000845b Zurek, 2001, Modeling methylaluminoxane (MAO), 109 Zakharov, 1999, A DFT quantum-chemical study on the structures and active sites of polymethylaluminoxane, Macromol Theory Simul, 8, 272, 10.1002/(SICI)1521-3919(19990501)8:3<272::AID-MATS272>3.0.CO;2-E Luhtanen, 2002, Quantum chemical studies on elementary fragments of three-coordinated methylaluminoxanes, J Organomet Chem, 648, 49, 10.1016/S0022-328X(01)01465-6 Zakharov, 2001, A density functional theory (DFT) quantum-chemical approach to the real structure of poly(methylaluminoxane), Macromol Theory Simul, 10, 108, 10.1002/1521-3919(20010201)10:2<108::AID-MATS108>3.0.CO;2-E Zakharov, 2001, Structures of MAO: experimental data and molecular models according to DFT quantum-chemical simulations, 63 Panchenko, 2001, Structure and performance of the solid methylalumoxane at temperatures 20–250 °C. Experimental and DFT calculation study, J Mol Catal, A: Chem, 174, 107, 10.1016/S1381-1169(01)00190-X Ystenes, 2000, Experimental and theoretical investigations of the structure of methylaluminoxane (MAO) cocatalysts for olefin polymerization, J Polym Sci, Part A: Polym Chem, 38, 3106, 10.1002/1099-0518(20000901)38:17<3106::AID-POLA120>3.0.CO;2-T Bryant, 2001, Structural characterization of MAO and related aluminum complexes. 1. Solid-state 27Al NMR with comparison to EFG tensors from ab initio molecular orbital calculations, J Am Chem Soc, 123, 12009, 10.1021/ja011092a Zurek, 2001, A combined quantum mechanical and statistical mechanical study of the equilibrium of trimethylaluminum (TMA) and oligomers of (AlOCH3)n found in methylaluminoxane (MAO) solution, Inorg Chem, 40, 3279, 10.1021/ic001444z Sinn, 1999, 105 Rytter, 2001, Methylaluminoxane as a cocatalyst for olefin polymerization. Structure, reactivity and cocatalytic effect, 23 Rytter, 2001, Reactivity and acidity of alkylaluminoxanes, Organometallics, 20, 4466, 10.1021/om010379d Smith, 1972, The monomer–dimer equilibria of liquid aluminum alkyls. III. Trimethylaluminum: the monomer–dimer equilibria of liquid and gaseous trimethylaluminum and triethylaluminum, J Organomet Chem, 46, 31, 10.1016/S0022-328X(00)90473-X Tossell, 2002, Calculation of the change in 1H NMR spectrum of Al(CH3)3 (TMA) produced by complexation with C4H8O (THF), Organometallics, 21, 4523, 10.1021/om020452f Zurek, 2002, Toward the identification of dormant and active species in MAO (methylaluminoxane)-activated, dimethylzirconocene-catalyzed olefin polymerization, Organometallics, 21, 83, 10.1021/om010812j Zakharov, 2002, A DFT quantum-chemical study of ion-pair formation for the catalyst Cp2ZrMe2/MAO, Macromol Theory Simul, 11, 352, 10.1002/1521-3919(20020301)11:3<352::AID-MATS352>3.0.CO;2-2 Vanka, 2000, A density functional study of ion-pair formation and dissociation in the reaction between boron-and aluminum-based Lewis acids with (1,2-Me2Cp)2ZrMe2, Organometallics, 19, 1841, 10.1021/om990830p Xu, 2002, Theoretical study of the interactions between cations and anions in group IV transition-metal catalysts for single-site homogeneous olefin polymerization, Organometallics, 21, 2444, 10.1021/om011057c Fusco, 1997, Olefin polymerization with homogeneous Ziegler–Natta catalysts: a DFT quantum-mechanical study of the reactions of Cp2MtCH3Cl (Mt=Ti, Zr) with Al(CH3)3 and MAO, Macromolecules, 30, 7673, 10.1021/ma9708611 Ferreira, 2001, Theoretical and spectroscopic UV study of the EtInd2ZrCl2/MAO, EtInd2ZrCl2/MAO-AlCl3 and EtInd2ZrCl2/MAO-ethyl benzoate interaction, Macromol Chem Phys, 202, 495, 10.1002/1521-3935(20010201)202:4<495::AID-MACP495>3.0.CO;2-N Belelli, 2003, DFT studies of zirconocene/MAO interaction, J Mol Catal A: Chem, 192, 9, 10.1016/S1381-1169(02)00404-1 Zurek, 2003, A theoretical study of the insertion barrier of MAO (methylaluminoxane)-activated, Cp2ZrMe2-catalyzed ethylene polymerization: further evidence for the structural assignment of active and dormant species, Faraday Discuss, 124, 93, 10.1039/b209455j Thorshaug, 1998, Termination, isomerization, and propagation reactions during ethene polymerization catalyzed by Cp2Zr–R+Cp∗2Zr–R+. An experimental and theoretical investigation, Macromolecules, 31, 7149, 10.1021/ma980694k Fusco, 1998, Ethylene polymerization catalyzed by metallocene/methylaluminoxane systems: quantum-mechanical study on the role of olefin separated ion pairs (OSIP) in the polymerization mechanism, Macromol Rapid Commun, 19, 257, 10.1002/(SICI)1521-3927(19980501)19:5<257::AID-MARC257>3.0.CO;2-C Ferreira, 2002, A proposed mechanism for olefin polymerization, 2a EHMO and MM2 study, Macromol Theory Simul, 11, 267, 10.1002/1521-3919(20020301)11:3<267::AID-MATS267>3.0.CO;2-J Ferreira, 1997, A semi-empirical study on Ziegler–Natta catalyst: concerning the interaction EtInd2ZrCl2/MAO/SiO2, J Mol Catal A, 122, 51, 10.1016/S1381-1169(97)00016-2 Ferreira, 1999, MO studies of propylene adsorption on EtInd2ZrCH3+‖SiO2∗MAO−, J Mol Catal, A, 148, 127, 10.1016/S1381-1169(99)00028-X Ferreira, 2000, Theoretical and experimental study of the interaction of methylaluminoxane (MAO)-low temperature treated silica: role of trimethylaluminium (TMA), Macromol Chem Phys, 201, 1334, 10.1002/1521-3935(20000801)201:12<1334::AID-MACP1334>3.0.CO;2-# Juan, 2000, Study of zirconocene and MAO interaction with SiO2 surfaces, Appl Surf Sci, 161, 417, 10.1016/S0169-4332(00)00295-6 Juan, 2000, Zirconocene interaction with MAO on (111) and (100) silica surfaces, Macromol Theory Simul, 9, 381, 10.1002/1521-3919(20000801)9:7<381::AID-MATS381>3.0.CO;2-7 Juan, 2001, The electronic structure and bonding of MAO on the SiO2 (111) hydrated surface, Macromol Theory Simul, 10, 485, 10.1002/1521-3919(20010601)10:5<485::AID-MATS485>3.0.CO;2-4