Theoretical prediction of radiation-enhanced diffusion behavior in nickel under self-ion irradiation
Tóm tắt
The enhanced diffusion in materials under irradiation plays an important role in the long-term microstructural evolution. In this work, the self-ion irradiation in nickel was used as a model system to study the effect of radiation-enhanced diffusion on the implanted ion profiles. Initially, the depth profiles of vacancies and implanted ions for nickel self-ion irradiation with ion energies up to 15 MeV were computed by the high-efficiency Monte Carlo code IM3D (Irradiation of Materials in 3D). The results are in good agreement with those predicted by SRIM (Stopping and Range of Ions in Matter). Then, diffusion coefficients as functions of temperature and damage rate were obtained, and the depth-dependent diffusion coefficients at various temperatures and damage rates were also illustrated. For this purpose, we used a temperature-dependent effective sink concentration for nickel, which was estimated from the available experimental investigations on the damage structures of irradiated nickel. At length, case studies on the time evolution of implanted ion profiles under the condition of nickel self-irradiation were performed and discussed based on Fick’s second law. The results help to understand the fundamental diffusion properties in ion irradiation, especially under higher-dose irradiation.
Tài liệu tham khảo
G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, 2nd edn. (Springer, New York, 2017)
F.A. Garner, Impact of the injected interstitial on the correlation of charged particle and neutron-induced radiation damage. J. Nucl. Mater. 117, 177–197 (1983). https://doi.org/10.1016/0022-3115(83)90023-5
L. Shao, C.-C. Wei, J. Gigax et al., Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with 3.5 MeV self-ions. J. Nucl. Mater. 453, 176–181 (2014). https://doi.org/10.1016/j.jnucmat.2014.06.002
O. Tissot, C. Pareige, E. Meslin et al., Influence of injected interstitials on α′ precipitation in Fe–Cr alloys under self-ion irradiation. Mater. Res. Lett. 5, 117–123 (2017). https://doi.org/10.1080/21663831.2016.1230896
A. Müller, V. Naundorf, M.P. Macht, Point defect sinks in self ion irradiated nickel: a self diffusion investigation. J. Appl. Phys. 64, 3445–3455 (1988). https://doi.org/10.1063/1.341477
A. Müller, V. Naundorf, M.P. Macht, Material transport parameters for irradiated nickel and austenitic FeCrNi alloys. J. Nucl. Mater. 155–157, 1128–1131 (1988). https://doi.org/10.1016/0022-3115(88)90481-3
P. Fielitz, M.P. Macht, V. Naundorf et al., Atom transport in nickel by displacement cascades for spatially dependent displacement rate and sink strength. Appl. Phys. Lett. 69, 331–333 (1996). https://doi.org/10.1063/1.118050
A. Müller, M.P. Macht, V. Naundorf, Determination of sink concentrations in ion irradiated nickel and copper by diffusion measurements. J. Nucl. Mater. 179–181, 958–961 (1991). https://doi.org/10.1016/0022-3115(91)90249-7
R. Kube, H. Bracht, E. Hüger et al., Contributions of vacancies and self-interstitials to self-diffusion in silicon under thermal equilibrium and nonequilibrium conditions. Phys. Rev. B. 88, 085206 (2013). https://doi.org/10.1103/PhysRevB.88.085206
T. Südkamp, G. Hamdana, M. Descoins et al., Self-diffusion in single crystalline silicon nanowires. J. Appl. Phys. 123, 161515 (2018). https://doi.org/10.1063/1.4996987
J.B. Liu, J. Luo, E. Simoen et al., Hot implantations of P into Ge: impact on the diffusion profile. ECS J. Solid State Sci. Technol. 6, 73–77 (2017). https://doi.org/10.1149/2.0311701jss
S. Schneider, H. Bracht, J.N. Klug et al., Radiation-enhanced self- and boron diffusion in germanium. Phys. Rev. B. 87, 115202 (2013). https://doi.org/10.1103/PhysRevB.87.115202
S.M. Myers, D.E. Amos, D.K. Brice, Modeling of enhanced diffusion under ion irradiation. J. Appl. Phys. 47, 1812–1819 (1976). https://doi.org/10.1063/1.322897
P.J. Doyle, K.M. Benensky, S.J. Zinkle, Modeling the impact of radiation-enhanced diffusion on implanted ion profiles. J. Nucl. Mater. 509, 168–180 (2018). https://doi.org/10.1016/j.jnucmat.2018.06.042
R. Sizmann, The effect of radiation upon diffusion in metals. J. Nucl. Mater. 69–70, 386–412 (1978). https://doi.org/10.1016/0022-3115(78)90256-8
H. Trinkaus, V. Naundorf, B.N. Singh et al., On the experimental determination of the migrating defect fraction under cascade damage conditions. J. Nucl. Mater. 210, 244–253 (1994). https://doi.org/10.1016/0022-3115(94)90178-3
R.E. Stoller, M.B. Toloczko, G.S. Was et al., On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 310, 75–80 (2013). https://doi.org/10.1016/j.nimb.2013.05.008
Y.G. Li, Y. Yang, M.P. Short et al., IM3D: a parallel Monte Carlo code for efficient simulations of primary radiation displacements and damage in 3D geometry. Sci. Rep. 5, 18130 (2015). https://doi.org/10.1038/srep18130
S.J. Zinkle, L.L. Snead, Opportunities and limitations for ion beams in radiation effects studies: bridging critical gaps between charged particle and neutron irradiations. Scr. Mater. 143, 154–160 (2018). https://doi.org/10.1016/j.scriptamat.2017.06.041
P.J. Doyle, K.M. Benensky, S.J. Zinkle, A set of MATLAB routines and associated files for prediction of radiation-enhanced diffusion in ion irradiated materials. Data Brief 21, 83–85 (2018). https://doi.org/10.1016/j.dib.2018.09.124
M.W. Rosenthal, P.N. Haubenreich, R.B. Briggs, The development status of molten-salt breeder reactors, ORNL-4812, Oak Ridge National Laboratory, Tennessee (1972). https://doi.org/10.2172/4622532
H. Xu, Z. Dai, X. Cai, Some physical issues of the thorium molten salt reactor nuclear energy system. Nucl. Phys. News. 24, 24–30 (2014). https://doi.org/10.1080/10619127.2014.910434
L. Jiang, X.X. Ye, D.J. Wang et al., Synchrotron radiation-based materials characterization techniques shed light on molten salt reactor alloys. Nucl. Sci. Tech. 31, 6 (2020). https://doi.org/10.1007/s41365-019-0719-7
R.S. Averback, Atomic displacement processes in irradiated metals. J. Nucl. Mater. 216, 49–62 (1994). https://doi.org/10.1016/0022-3115(94)90006-X
N.Q. Lam, H. Wiedersich, Bombardment-induced segregation and redistribution. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 18, 471–485 (1986). https://doi.org/10.1016/S0168-583X(86)80073-8
V. Naundorf, On the origin of freely migrating defects in ion and neutron irradiated metals. J. Nucl. Mater. 182, 254–257 (1991). https://doi.org/10.1016/0022-3115(91)90436-B
H. Wu, T. Mayeshiba, D. Morgan, High-throughput ab initio dilute solute diffusion database. Sci. Data 3, 160054 (2016). https://doi.org/10.1038/sdata.2016.54
C. Kittle, Introduction to Solid State Physics, 8th edn. (John Wiley & Sons, New York, 2005)
X. Zhang, H. Deng, S. Xiao et al., Diffusion of Co, Ru and Re in Ni-based superalloys: a first-principles study. J. Alloys Compd. 588, 163–169 (2014). https://doi.org/10.1016/j.jallcom.2013.11.024
A. Janotti, M. Krčmar, C.L. Fu et al., Solute diffusion in metals: larger atoms can move faster. Phys. Rev. Lett. 92, 085901 (2004). https://doi.org/10.1103/PhysRevLett.92.085901
V.I. Dubinko, S. Hu, Y. Li et al., Dislocation vs. production bias revisited with account of radiation-induced emission bias. I. Void swelling under electron and light ion irradiation. Philos. Mag. 92, 4113–4150 (2012). https://doi.org/10.1080/14786435.2012.704425
R. Stoller, Stadard practice for investigating the effects of neutron radiation damage using charged particle irradiation, ASTM E521-96 (2009), ASTM International, West Conshohocken, PA. https://doi.org/10.1520/E0521-96R09
A. Müller, V. Naundorf, M.P. Macht, Point defect interaction with sinks under ion irradiation in nickel investigated by self diffusion measurements. Mater. Sci. Forum 15–18, 1081–1086 (1987). https://doi.org/10.4028/www.scientific.net/MSF.15-18.1081
N.H. Packan, K. Farrell, J.O. Stiegler, Correlation of neutron and heavy-ion damage. I. The influence of dose rate and injected helium on swelling in pure nickel. J. Nucl. Mater. 78, 143–155 (1978)
J.E. Westmoreland, J.A. Sprague, F.A. Smidt et al., Dose rate effects in nickel-ion-irradiated nickel. Radiat. Eff. 26, 1–16 (1975). https://doi.org/10.1080/00337577508237413
J.A. Sprague, J.E. Westmoreland, F.A. Smidt et al., Effect of irradiation parameters on nickel-ion damage in nickel, in The Effects of Radiation on Matter, ed. by C.J. Baroch (ASTM STP 570, Philadelphia, 1975), pp. 505–524. https://doi.org/10.1520/STP33711S
M.J. Norgett, M.T. Robinson, I.M. Torrens, A proposed method of calculating displacement dose rates. Nucl. Eng. Des. 33, 50–54 (1975). https://doi.org/10.1016/0029-5493(75)90035-7
K. Maier, H. Mehrer, E. Lessmann et al., Self-diffusion in nickel at low temperatures. Phys. Status Solidi B 78, 689–698 (1976). https://doi.org/10.1002/pssb.2220780230
B. Million, J. Růžičková, J. Velíšek et al., Diffusion processes in the FeNi system. Mater. Sci. Eng. 50, 43–52 (1981). https://doi.org/10.1016/0025-5416(81)90084-7
I.G. Ivantsov, Self diffusion in monocrystalline nickel. Phys. Met. Met. 22, 77 (1966)
J.D. Tucker, R. Najafabadi, T.R. Allen et al., Ab initio-based diffusion theory and tracer diffusion in Ni–Cr and Ni–Fe alloys. J. Nucl. Mater. 405, 216–234 (2010). https://doi.org/10.1016/j.jnucmat.2010.08.003
H. Wiedersich, Kinetic processes during ion bombardment. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 7–8, 1–10 (1985). https://doi.org/10.1016/0168-583X(85)90521-X
J. Wang, M.B. Toloczko, N. Bailey et al., Modification of SRIM-calculated dose and injected ion profiles due to sputtering, injected ion buildup and void swelling. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 387, 20–28 (2016). https://doi.org/10.1016/j.nimb.2016.09.015
K. Vörtler, M. Mamivand, L. Barnard et al., Simulated spatial and temporal dependence of chromium concentration in pure Fe and Fe-14%Cr under high dpa ion irradiation. J. Nucl. Mater. 479, 23–35 (2016). https://doi.org/10.1016/j.jnucmat.2016.06.040
Y. Yang, Y.G. Li, M.P. Short et al., Nano-beam and nano-target effects in ion radiation. Nanoscale 10, 1598–1606 (2018). https://doi.org/10.1039/C7NR08116B