Theoretical prediction of a graphene-like structure of indium nitride: A promising excellent material for optoelectronics

Applied Materials Today - Tập 7 - Trang 169-178 - 2017
Qing Peng1,2,3, Xin Sun1, Han Wang4, Yunbo Yang4, Xiaodong Wen5,6, Chen Huang7, Sheng Liu2, Suvranu De1
1Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
2Research Center of Electronic Manufacturing and Packaging Integration, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
3Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
4Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
5Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
6Synfuels China Co. Ltd., Huairou, Beijing 101407, China
7Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA

Tài liệu tham khảo

Ambacher, 1998, Growth and applications of group III-nitrides, J. Phys. D, 31, 2653, 10.1088/0022-3727/31/20/001 Bhuiyan, 2003, Indium nitride (InN): a review on growth, characterization, and properties, J. Appl. Phys., 94, 2779, 10.1063/1.1595135 Jain, 2000, III-nitrides: growth, characterization, and properties, J. Appl. Phys., 87, 965, 10.1063/1.371971 Zhuang, 2013, Computational discovery of single-layer III–V materials, Phys. Rev. B, 87, 165415, 10.1103/PhysRevB.87.165415 Singh, 2014, Ab initio synthesis of single-layer III–V materials, Phys. Rev. B, 89, 245431, 10.1103/PhysRevB.89.245431 Inushima, 2003, Optical properties of Si-doped InN grown on sapphire (0001), Phys. Rev. B, 68, 235204, 10.1103/PhysRevB.68.235204 Kaczmarczyk, 2000, Lattice dynamics of hexagonal and cubic InN: Raman-scattering experiments and calculations, Appl. Phys. Lett., 76, 2122, 10.1063/1.126273 Matsuoka, 2002, Optical bandgap energy of wurtzite InN, Appl. Phys. Lett., 81, 1246, 10.1063/1.1499753 Wu, 2002, Unusual properties of the fundamental band gap of InN, Appl. Phys. Lett., 80, 3967, 10.1063/1.1482786 Davydov, 2002, Band gap of InN and In-rich InxGa1−xN alloys (0.36<x<1), Phys. Status Solidi (B), 230, R4, 10.1002/1521-3951(200204)230:2<R4::AID-PSSB99994>3.0.CO;2-Z McCluskey, 1998, Large band gap bowing of InxGa1−xN alloys, Appl. Phys. Lett., 72, 2725, 10.1063/1.121072 Liou, 2005, First-principles calculation for bowing parameter of wurtzite InxGa1−xN, Opt. Commun., 249, 217, 10.1016/j.optcom.2005.01.013 Osamura, 1975, Preparation and optical properties of Ga1−xInxN thin films, J. Appl. Phys., 46, 3432, 10.1063/1.322064 Oseki, 2014, Field-effect transistors based on cubic indium nitride, Sci. Rep., 4, 3951, 10.1038/srep03951 Tansley, 1984, Electron mobility in indium nitride, Electron. Lett., 20, 1066, 10.1049/el:19840729 Tsen, 2005, Observation of large electron drift velocities in InN by ultrafast Raman spectroscopy, Appl. Phys. Lett., 86, 222103, 10.1063/1.1931048 Oseki, 2014, Field-effect transistors based on cubic indium nitride, Sci. Rep., 4, 3951, 10.1038/srep03951 Nakamura, 1998, The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes, Science, 281, 956, 10.1126/science.281.5379.956 Calarco, 2012, InN nanowires: growth and optoelectronic properties, Materials, 5, 2137, 10.3390/ma5112137 Kamimura, 2016, High-quality cubic and hexagonal InN crystals studied by micro-Raman scattering and electron backscatter diffraction, J. Phys. D: Appl. Phys., 49, 155106, 10.1088/0022-3727/49/15/155106 Huang, 2011, Quantum transport in indium nitride nanowires, Phys. Rev. B, 83, 10.1103/PhysRevB.83.245310 Richter, 2009, Electrical transport properties of single undoped and n-type doped InN nanowires, Nanotechnology, 20, 405206, 10.1088/0957-4484/20/40/405206 Yin, 2004, Growth of single-crystal indium nitride nanotubes and nanowires by a controlled-carbonitridation reaction route, Adv. Mater., 16, 1833, 10.1002/adma.200306684 Cho, 2016, Impact of substrate nitridation on the growth of InN on In2O3(111) by plasma-assisted molecular beam epitaxy, Appl. Surf. Sci., 369, 159, 10.1016/j.apsusc.2016.01.268 Simpkins, 2010, Induced epitaxy for growth of aligned indium nitride nano- and microrods, Cryst. Growth Des., 10, 3887, 10.1021/cg100221w Jung, 2012, Regularly branched InN nanostructures: zinc-blende nanocore and polytypic transition, J. Appl. Crystallogr., 45, 503, 10.1107/S0021889812011545 Geim, 2013, Van der Waals heterostructures, Nature, 499, 419, 10.1038/nature12385 Lei, 2014, A facile solvothermal method to produce graphene-ZnS composites for superior photoelectric applications, Appl. Surf. Sci., 308, 206, 10.1016/j.apsusc.2014.04.135 Kole, 2014, Observations of unusual temperature dependent photoluminescence anti-quenching in two-dimensional nanosheets of ZnS/ZnO composites and polarization dependent photoluminescence enhancement in fungi-like ZnO nanostructures, J. Appl. Phys., 115, 224306, 10.1063/1.4883244 Ariga, 2012, Mechanical control of nanomaterials and nanosystems, Adv. Mater., 24, 158, 10.1002/adma.201102617 Soboyejo, 2002 Nye, 1995 Dai, 2015, Stress evolution in AlN and GaN grown on Si(111): experiments and theoretical modeling, J. Mater. Sci., 27, 2004 Dai, 2016, A first-principles study of the mechanical properties of AlN with Raman verification, Comput. Mater. Sci., 112, 342, 10.1016/j.commatsci.2015.09.027 Peng, 2014, Elastic limit of silicane, Nanoscale, 6, 12071, 10.1039/C4NR01831A Peng, 2012, A first principles investigation of the mechanical properties of g-TlN, Model. Numer. Simul. Mater. Sci., 2, 76 Peng, 2013, A first principles investigation of the mechanical properties of g-ZnO: the graphene-like hexagonal zinc oxide monolayer, Comput. Mater. Sci., 68, 320, 10.1016/j.commatsci.2012.10.019 Peng, 2013, A theoretical analysis of the effect of the hydrogenation of graphene to graphane on its mechanical properties, Phys. Chem. Chem. Phys., 15, 2003, 10.1039/C2CP43360E Peng, 2013, A first-principles study of the mechanical properties of g-GeC, Mech. Mater., 64, 135, 10.1016/j.mechmat.2013.05.009 Peng, 2013, Chemically tuning mechanics of graphene by BN, Adv. Eng. Mater., 15, 718, 10.1002/adem.201300033 Peng, 2015, A density functional theory study of the mechanical properties of graphane with van der Waals corrections, Mech. Adv. Mater. Struct., 22, 717, 10.1080/15376494.2013.839067 Peng, 2013, Mechanical stabilities of silicene, RSC Adv., 3, 13772, 10.1039/c3ra41347k Peng, 2013, Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage, Phys. Chem. Chem. Phys., 15, 19427, 10.1039/c3cp52879k Peng, 2013, Mechanical properties and instabilities of ordered graphene oxide C6O monolayer, RSC Adv., 3, 24337, 10.1039/c3ra44949a Peng, 2015, Mechanical properties and stabilities of α-boron monolayers, Phys. Chem. Chem. Phys., 17, 2160, 10.1039/C4CP04050C Peng, 2015, Mechanical properties and stabilities of g-ZnS monolayers, RSC Adv., 5, 11240, 10.1039/C4RA13872D Peng, 2015, Peculiar pressure effect on Poisson ratio of graphone as a strain damper, Nanoscale, 7, 9975, 10.1039/C4NR07665F Peng, 2015, Mechanical degradation of graphene by epoxidation: insights from first-principles calculations, Phys. Chem. Chem. Phys., 17, 19484, 10.1039/C5CP02986D Peng, 2012, Mechanical properties of the hexagonal boron nitride monolayer: ab initio study, Comput. Mater. Sci., 56, 11, 10.1016/j.commatsci.2011.12.029 Kresse, 1993, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47, 558, 10.1103/PhysRevB.47.558 Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Jones, 1989, The density functional formalism, its applications and prospects, Rev. Mod. Phys., 61, 689, 10.1103/RevModPhys.61.689 Grimme, 2010, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu, J. Chem. Phys., 132, 154104, 10.1063/1.3382344 Togo, 2015, First principles phonon calculations in materials science, Scr. Mater., 108, 1, 10.1016/j.scriptamat.2015.07.021 Brugger, 1964, Thermodynamic definition of higher order elastic coefficients, Phys. Rev. A, 133, 1611, 10.1103/PhysRev.133.A1611 Peng, 2013, First-principles study of the effects of mechanical strains on the radiation hardness of hexagonal boron nitride monolayers, Nanoscale, 5, 695, 10.1039/C2NR32366D Peng, 2013, Mechanical stabilities and properties of graphene-like aluminum nitride predicted from first-principles calculations, RSC Adv., 3, 7083, 10.1039/c3ra40841h Peng, 2013, Mechanical properties of g-GaN: a first principles study, Appl. Phys. A, 13, 483, 10.1007/s00339-013-7551-4 Ueno, 1994, Stability of the wurtzite-type structure under high pressure: GaN and InN, Phys. Rev. B, 49, 14, 10.1103/PhysRevB.49.14 Ahmed, 2005, A first principle study of band structure of III-nitride compounds, Physica B, 370, 52, 10.1016/j.physb.2005.08.044 Carrier, 2005, Theoretical study of the band-gap anomaly of InN, J. Appl. Phys., 97, 033707, 10.1063/1.1849425 Maurya, 2010, Ab-initio study of electronic and optical properties of InN in wurtzite and cubic phases, Opt. Commun., 283, 4655, 10.1016/j.optcom.2010.07.011 Yan, 2014, First-principles study of high-field-related electronic behavior of group-III nitrides, Phys. Rev. B, 90, 121201, 10.1103/PhysRevB.90.121201 Li, 2015, Prediction of large-gap quantum spin hall insulator and Rashba–Dresselhaus effect in two-dimensional g-TlA (A=N, P, As, and Sb) monolayer films, Nano Res., 8, 2954, 10.1007/s12274-015-0800-4 Sun, 2016, Ab initio prediction and characterization of Mo2C monolayer as anodes for lithium-ion and sodium-ion batteries, J. Phys. Chem. Lett., 7, 937, 10.1021/acs.jpclett.6b00171 Cerda, 2003, Geometry and physics of wrinkling, Phys. Rev. Lett., 90, 074302, 10.1103/PhysRevLett.90.074302 Bao, 2009, Controlled ripple texturing of suspended graphene and ultrathin graphite membranes, Nat. Nanotechnol., 4, 562, 10.1038/nnano.2009.191 Hiki, 1981, Higher-order elastic-constants of solids, Annu. Rev. Mater. Sci., 11, 51, 10.1146/annurev.ms.11.080181.000411 Brugger, 1965, Determination of 3rd-order elastic coefficients in crystals, J. Appl. Phys., 36, 768, 10.1063/1.1714216 Peng, 2012, Elastic properties of hybrid graphene/boron nitride monolayer, Acta Mech., 223, 2591, 10.1007/s00707-012-0714-0 Peng, 2012, Mechanical properties of graphene monolayer: a first-principles study, Phys. Chem. Chem. Phys., 14, 13385, 10.1039/c2cp42387a Li, 2012, Ideal strength and phonon instability in single-layer MoS2, Phys. Rev. B, 85, 235407, 10.1103/PhysRevB.85.235407 Staszczak, 2013, Photoluminescence and pressure effects in short period InN/nGaN superlattices, J. Appl. Phys., 113, 123101, 10.1063/1.4796101 Lepkowski, 2005, Nonlinear elasticity in III-N compounds: ab initio calculations, Phys. Rev. B, 72, 245201, 10.1103/PhysRevB.72.245201 Topsakal, 2010, The response of mechanical and electronic properties of graphane to the elastic strain, Appl. Phys. Lett., 96, 091912, 10.1063/1.3353968