Theoretical prediction of a graphene-like structure of indium nitride: A promising excellent material for optoelectronics
Tài liệu tham khảo
Ambacher, 1998, Growth and applications of group III-nitrides, J. Phys. D, 31, 2653, 10.1088/0022-3727/31/20/001
Bhuiyan, 2003, Indium nitride (InN): a review on growth, characterization, and properties, J. Appl. Phys., 94, 2779, 10.1063/1.1595135
Jain, 2000, III-nitrides: growth, characterization, and properties, J. Appl. Phys., 87, 965, 10.1063/1.371971
Zhuang, 2013, Computational discovery of single-layer III–V materials, Phys. Rev. B, 87, 165415, 10.1103/PhysRevB.87.165415
Singh, 2014, Ab initio synthesis of single-layer III–V materials, Phys. Rev. B, 89, 245431, 10.1103/PhysRevB.89.245431
Inushima, 2003, Optical properties of Si-doped InN grown on sapphire (0001), Phys. Rev. B, 68, 235204, 10.1103/PhysRevB.68.235204
Kaczmarczyk, 2000, Lattice dynamics of hexagonal and cubic InN: Raman-scattering experiments and calculations, Appl. Phys. Lett., 76, 2122, 10.1063/1.126273
Matsuoka, 2002, Optical bandgap energy of wurtzite InN, Appl. Phys. Lett., 81, 1246, 10.1063/1.1499753
Wu, 2002, Unusual properties of the fundamental band gap of InN, Appl. Phys. Lett., 80, 3967, 10.1063/1.1482786
Davydov, 2002, Band gap of InN and In-rich InxGa1−xN alloys (0.36<x<1), Phys. Status Solidi (B), 230, R4, 10.1002/1521-3951(200204)230:2<R4::AID-PSSB99994>3.0.CO;2-Z
McCluskey, 1998, Large band gap bowing of InxGa1−xN alloys, Appl. Phys. Lett., 72, 2725, 10.1063/1.121072
Liou, 2005, First-principles calculation for bowing parameter of wurtzite InxGa1−xN, Opt. Commun., 249, 217, 10.1016/j.optcom.2005.01.013
Osamura, 1975, Preparation and optical properties of Ga1−xInxN thin films, J. Appl. Phys., 46, 3432, 10.1063/1.322064
Oseki, 2014, Field-effect transistors based on cubic indium nitride, Sci. Rep., 4, 3951, 10.1038/srep03951
Tansley, 1984, Electron mobility in indium nitride, Electron. Lett., 20, 1066, 10.1049/el:19840729
Tsen, 2005, Observation of large electron drift velocities in InN by ultrafast Raman spectroscopy, Appl. Phys. Lett., 86, 222103, 10.1063/1.1931048
Oseki, 2014, Field-effect transistors based on cubic indium nitride, Sci. Rep., 4, 3951, 10.1038/srep03951
Nakamura, 1998, The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes, Science, 281, 956, 10.1126/science.281.5379.956
Calarco, 2012, InN nanowires: growth and optoelectronic properties, Materials, 5, 2137, 10.3390/ma5112137
Kamimura, 2016, High-quality cubic and hexagonal InN crystals studied by micro-Raman scattering and electron backscatter diffraction, J. Phys. D: Appl. Phys., 49, 155106, 10.1088/0022-3727/49/15/155106
Huang, 2011, Quantum transport in indium nitride nanowires, Phys. Rev. B, 83, 10.1103/PhysRevB.83.245310
Richter, 2009, Electrical transport properties of single undoped and n-type doped InN nanowires, Nanotechnology, 20, 405206, 10.1088/0957-4484/20/40/405206
Yin, 2004, Growth of single-crystal indium nitride nanotubes and nanowires by a controlled-carbonitridation reaction route, Adv. Mater., 16, 1833, 10.1002/adma.200306684
Cho, 2016, Impact of substrate nitridation on the growth of InN on In2O3(111) by plasma-assisted molecular beam epitaxy, Appl. Surf. Sci., 369, 159, 10.1016/j.apsusc.2016.01.268
Simpkins, 2010, Induced epitaxy for growth of aligned indium nitride nano- and microrods, Cryst. Growth Des., 10, 3887, 10.1021/cg100221w
Jung, 2012, Regularly branched InN nanostructures: zinc-blende nanocore and polytypic transition, J. Appl. Crystallogr., 45, 503, 10.1107/S0021889812011545
Geim, 2013, Van der Waals heterostructures, Nature, 499, 419, 10.1038/nature12385
Lei, 2014, A facile solvothermal method to produce graphene-ZnS composites for superior photoelectric applications, Appl. Surf. Sci., 308, 206, 10.1016/j.apsusc.2014.04.135
Kole, 2014, Observations of unusual temperature dependent photoluminescence anti-quenching in two-dimensional nanosheets of ZnS/ZnO composites and polarization dependent photoluminescence enhancement in fungi-like ZnO nanostructures, J. Appl. Phys., 115, 224306, 10.1063/1.4883244
Ariga, 2012, Mechanical control of nanomaterials and nanosystems, Adv. Mater., 24, 158, 10.1002/adma.201102617
Soboyejo, 2002
Nye, 1995
Dai, 2015, Stress evolution in AlN and GaN grown on Si(111): experiments and theoretical modeling, J. Mater. Sci., 27, 2004
Dai, 2016, A first-principles study of the mechanical properties of AlN with Raman verification, Comput. Mater. Sci., 112, 342, 10.1016/j.commatsci.2015.09.027
Peng, 2014, Elastic limit of silicane, Nanoscale, 6, 12071, 10.1039/C4NR01831A
Peng, 2012, A first principles investigation of the mechanical properties of g-TlN, Model. Numer. Simul. Mater. Sci., 2, 76
Peng, 2013, A first principles investigation of the mechanical properties of g-ZnO: the graphene-like hexagonal zinc oxide monolayer, Comput. Mater. Sci., 68, 320, 10.1016/j.commatsci.2012.10.019
Peng, 2013, A theoretical analysis of the effect of the hydrogenation of graphene to graphane on its mechanical properties, Phys. Chem. Chem. Phys., 15, 2003, 10.1039/C2CP43360E
Peng, 2013, A first-principles study of the mechanical properties of g-GeC, Mech. Mater., 64, 135, 10.1016/j.mechmat.2013.05.009
Peng, 2013, Chemically tuning mechanics of graphene by BN, Adv. Eng. Mater., 15, 718, 10.1002/adem.201300033
Peng, 2015, A density functional theory study of the mechanical properties of graphane with van der Waals corrections, Mech. Adv. Mater. Struct., 22, 717, 10.1080/15376494.2013.839067
Peng, 2013, Mechanical stabilities of silicene, RSC Adv., 3, 13772, 10.1039/c3ra41347k
Peng, 2013, Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage, Phys. Chem. Chem. Phys., 15, 19427, 10.1039/c3cp52879k
Peng, 2013, Mechanical properties and instabilities of ordered graphene oxide C6O monolayer, RSC Adv., 3, 24337, 10.1039/c3ra44949a
Peng, 2015, Mechanical properties and stabilities of α-boron monolayers, Phys. Chem. Chem. Phys., 17, 2160, 10.1039/C4CP04050C
Peng, 2015, Mechanical properties and stabilities of g-ZnS monolayers, RSC Adv., 5, 11240, 10.1039/C4RA13872D
Peng, 2015, Peculiar pressure effect on Poisson ratio of graphone as a strain damper, Nanoscale, 7, 9975, 10.1039/C4NR07665F
Peng, 2015, Mechanical degradation of graphene by epoxidation: insights from first-principles calculations, Phys. Chem. Chem. Phys., 17, 19484, 10.1039/C5CP02986D
Peng, 2012, Mechanical properties of the hexagonal boron nitride monolayer: ab initio study, Comput. Mater. Sci., 56, 11, 10.1016/j.commatsci.2011.12.029
Kresse, 1993, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47, 558, 10.1103/PhysRevB.47.558
Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Jones, 1989, The density functional formalism, its applications and prospects, Rev. Mod. Phys., 61, 689, 10.1103/RevModPhys.61.689
Grimme, 2010, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu, J. Chem. Phys., 132, 154104, 10.1063/1.3382344
Togo, 2015, First principles phonon calculations in materials science, Scr. Mater., 108, 1, 10.1016/j.scriptamat.2015.07.021
Brugger, 1964, Thermodynamic definition of higher order elastic coefficients, Phys. Rev. A, 133, 1611, 10.1103/PhysRev.133.A1611
Peng, 2013, First-principles study of the effects of mechanical strains on the radiation hardness of hexagonal boron nitride monolayers, Nanoscale, 5, 695, 10.1039/C2NR32366D
Peng, 2013, Mechanical stabilities and properties of graphene-like aluminum nitride predicted from first-principles calculations, RSC Adv., 3, 7083, 10.1039/c3ra40841h
Peng, 2013, Mechanical properties of g-GaN: a first principles study, Appl. Phys. A, 13, 483, 10.1007/s00339-013-7551-4
Ueno, 1994, Stability of the wurtzite-type structure under high pressure: GaN and InN, Phys. Rev. B, 49, 14, 10.1103/PhysRevB.49.14
Ahmed, 2005, A first principle study of band structure of III-nitride compounds, Physica B, 370, 52, 10.1016/j.physb.2005.08.044
Carrier, 2005, Theoretical study of the band-gap anomaly of InN, J. Appl. Phys., 97, 033707, 10.1063/1.1849425
Maurya, 2010, Ab-initio study of electronic and optical properties of InN in wurtzite and cubic phases, Opt. Commun., 283, 4655, 10.1016/j.optcom.2010.07.011
Yan, 2014, First-principles study of high-field-related electronic behavior of group-III nitrides, Phys. Rev. B, 90, 121201, 10.1103/PhysRevB.90.121201
Li, 2015, Prediction of large-gap quantum spin hall insulator and Rashba–Dresselhaus effect in two-dimensional g-TlA (A=N, P, As, and Sb) monolayer films, Nano Res., 8, 2954, 10.1007/s12274-015-0800-4
Sun, 2016, Ab initio prediction and characterization of Mo2C monolayer as anodes for lithium-ion and sodium-ion batteries, J. Phys. Chem. Lett., 7, 937, 10.1021/acs.jpclett.6b00171
Cerda, 2003, Geometry and physics of wrinkling, Phys. Rev. Lett., 90, 074302, 10.1103/PhysRevLett.90.074302
Bao, 2009, Controlled ripple texturing of suspended graphene and ultrathin graphite membranes, Nat. Nanotechnol., 4, 562, 10.1038/nnano.2009.191
Hiki, 1981, Higher-order elastic-constants of solids, Annu. Rev. Mater. Sci., 11, 51, 10.1146/annurev.ms.11.080181.000411
Brugger, 1965, Determination of 3rd-order elastic coefficients in crystals, J. Appl. Phys., 36, 768, 10.1063/1.1714216
Peng, 2012, Elastic properties of hybrid graphene/boron nitride monolayer, Acta Mech., 223, 2591, 10.1007/s00707-012-0714-0
Peng, 2012, Mechanical properties of graphene monolayer: a first-principles study, Phys. Chem. Chem. Phys., 14, 13385, 10.1039/c2cp42387a
Li, 2012, Ideal strength and phonon instability in single-layer MoS2, Phys. Rev. B, 85, 235407, 10.1103/PhysRevB.85.235407
Staszczak, 2013, Photoluminescence and pressure effects in short period InN/nGaN superlattices, J. Appl. Phys., 113, 123101, 10.1063/1.4796101
Lepkowski, 2005, Nonlinear elasticity in III-N compounds: ab initio calculations, Phys. Rev. B, 72, 245201, 10.1103/PhysRevB.72.245201
Topsakal, 2010, The response of mechanical and electronic properties of graphane to the elastic strain, Appl. Phys. Lett., 96, 091912, 10.1063/1.3353968