Theoretical investigations on the antioxidant potential of 2,4,5-trihydroxybutyrophenone in different solvents: A DFT approach

Results in Chemistry - Tập 4 - Trang 100515 - 2022
Jewel Hossen1, Tarun Kumar Pal1, Tariqul Hasan2
1Department of Chemistry, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
2Department of Chemistry, University of Rajshahi, Rajshahi 6205, Bangladesh

Tài liệu tham khảo

Niki, 2016, Antioxidant capacity of foods for scavenging reactive oxidants and inhibition of plasma lipid oxidation induced by multiple oxidants, Food Funct., 7, 2156, 10.1039/C6FO00275G Antonchenko, 2005, Structural, energetic, and spectroscopic features of lower energy complexes of superoxide hydrates O2-(H2O) 1–4, J. Phys. Chem. A, 109, 3052, 10.1021/jp046498z Çakmak, 2020, A theoretical evaluation on free radical scavenging activity of 3-styrylchromone derivatives: the DFT study, J. Mol. Model., 26, 1, 10.1007/s00894-020-04368-7 Neha, 2019, Medicinal prospects of antioxidants: A review, Eur. J. Med. Chem., 178, 687, 10.1016/j.ejmech.2019.06.010 Valko, 2006, Free radicals, metals and antioxidants in oxidative stress-induced cancer, Chem. Biol. Interact., 160, 1, 10.1016/j.cbi.2005.12.009 Mokini, 2010, Molecular pathology of oxidative stress in diabetic angiopathy: role of mitochondrial and cellular pathways, Diabetes Res. Clin. Pract., 87, 313, 10.1016/j.diabres.2009.11.018 Verni, 2019, How fermentation affects the antioxidant properties of cereals and legumes, Foods., 8, 362, 10.3390/foods8090362 Zeb, 2021, Phenolic Antioxidants in Foods: Chemistry, Biochemistry and Analysis, Springer. Hawley, 2001, Condensed chemical dictionary, Van Nostrand Reinhold Company Furia, 1973 Zheng, 2001, Antioxidant activity and phenolic compounds in selected herbs, J. Agric. Food Chem., 49, 5165, 10.1021/jf010697n Rice-Evans, 1997, Antioxidant properties of phenolic compounds, Trends Plant Sci., 2, 152, 10.1016/S1360-1385(97)01018-2 Tohma, 2017, Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS, J. Food Meas. Charact., 11, 556, 10.1007/s11694-016-9423-z Mussatto, 2011, Extraction of antioxidant phenolic compounds from spent coffee grounds, Sep. Purif. Technol., 83, 173, 10.1016/j.seppur.2011.09.036 Baschieri, 2017, Explaining the antioxidant activity of some common non-phenolic components of essential oils, Food Chem., 232, 656, 10.1016/j.foodchem.2017.04.036 Q.V. Vo, P.C. Nam, M.V. Bay, N.M. Thong, N.D. Cuong, undefined 2018, Density functional theory study of the role of benzylic hydrogen atoms in the antioxidant properties of lignans, Sci. Rep. 8 (2018) 1–10, https://doi.org/10.1038/s41598-018-30860-5. Ngo, 2016, Insight into the antioxidant properties of non-phenolic terpenoids contained in essential oils extracted from the buds of Cleistocalyx operculatus: a DFT study, RSC Adv., 6, 30824, 10.1039/C6RA02683D Madhavi, 1995, Food Antioxidants: Sources and Methods of Evaluation, Food Antioxidants., 79, 10.1201/9781482273175-10 Xue, 2014, Density functional theory study of the structure–antioxidant activity of polyphenolic deoxybenzoins, Food Chem., 151, 198, 10.1016/j.foodchem.2013.11.064 Chen, 2015, Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: An experimental and theoretical evaluation, PLoS ONE, 10 Zheng, 2018, The surrounding environments on the structure and antioxidative activity of luteolin, J. Mol. Model., 24, 1, 10.1007/s00894-018-3680-1 Parr, 1983, Absolute Hardness: Companion Parameter to Absolute Electronegativity, J. Am. Chem. Soc., 105, 7512, 10.1021/ja00364a005 Pearson, 2002, Hard and Soft Acids and Bases, J. Am. Chem. Soc., 85, 3533, 10.1021/ja00905a001 Job, 2006, Chemical potential—a quantity in search of recognition, Eur. J. Phys., 27, 353, 10.1088/0143-0807/27/2/018 Parr, 2008, Electronegativity: The density functional viewpoint, J. Chem. Phys., 68, 3801, 10.1063/1.436185 Baekelandt, 2002, Probing the reactivity of different sites within a molecule or solid by direct computation of molecular sensitivities via an extension of the electronegativity equalization method, J. Am. Chem. Soc., 113, 6730, 10.1021/ja00018a003 Kaya, 2015, A new method for calculation of molecular hardness: A theoretical study, Comput, Theor. Chem., 1060, 66, 10.1016/j.comptc.2015.03.004 Jadoun, 2021, Insights into the spectral, thermal and morphological effects of co-oligomerization of pyrrole with luminol: A comparative experimental and computational study, Mater. Sci. Eng., B, 273, 10.1016/j.mseb.2021.115396 Kumer, 2019, The Theoretical Prediction of Thermophysical properties, HOMO, LUMO, QSAR and Biological Indics of Cannabinoids (CBD) and Tetrahhdrocannabinol (THC) by Computational Chemistry, Adv. J. Chem. A., 2, 190, 10.33945/SAMI/AJCA.2019.2.190202 Frisch, 2009, Gaussian Inc, Wallingford CT, Gaussian 09, Revision D.01 Lee, 1988, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B., 37, 785, 10.1103/PhysRevB.37.785 Vosko, 1980, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys., 58, 1200, 10.1139/p80-159 Stephens, 1994, Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem., 98, 11623, 10.1021/j100096a001 Filho, 2020, Photoinduced degradation of indigo carmine: insights from a computational investigation, J. Mol. Model., 26, 309, 10.1007/s00894-020-04567-2 Mikulski, 2010, Eur. J. Med. Chem., 45, 2366, 10.1016/j.ejmech.2010.02.016 Praveena, 2014, Antioxidant potential of orientin: a combined experimental and DFT approach, J. Mol. Struct., 1061, 114, 10.1016/j.molstruc.2014.01.002 de Souza, 2021, Benchmarking Antioxidant-Related Properties for Gallic Acid through the Use of DFT, MP2, CCSD, and CCSD(T) Approaches, J. Phys. Chem. A, 125, 198, 10.1021/acs.jpca.0c09116 Santos, 2020, Probing structural properties and antioxidant activity mechanisms for eleocarpanthraquinone, J. Mol. Model., 26, 233, 10.1007/s00894-020-04469-3 Maciel, 2019, A computational study on the reaction between fisetin and 2,2-diphenyl-1-picrylhydrazyl (DPPH), J. Mol. Model., 25, 103, 10.1007/s00894-019-3969-8 Maciel, 2018, Examining the reaction between antioxidant compounds and 2,2-diphenyl-1-picrylhydrazyl (DPPH) through a computational investigation, J. Mol. Model., 24, 1, 10.1007/s00894-018-3745-1 Boulebd, 2020, The role of benzylic-allylic hydrogen atoms on the antiradical activity of prenylated natural chalcones: a thermodynamic and kinetic study, J. Biomol. Struct. Dyn., 39, 1 Boulebd, 2020, Theoretical insights into the antioxidant activity of moracin T, Free Radic. Res., 54, 221, 10.1080/10715762.2020.1747616 Zheng, 2020, Effects of different ester chains on the antioxidant activity of caffeic acid, Bioorg. Chem., 105, 10.1016/j.bioorg.2020.104341 Klein, 2009, DFT/B3LYP Study of the O – H Bond Dissociation Enthalpies and Proton Affinities of para- and meta- Substituted Phenols in Water and Benzene, Acta Chim. Slovaca., 2, 37 Atkins, 2002 Rimarčík, 2010, Study of the solvent effect on the enthalpies of homolytic and heterolytic N-H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine, J. Mol. Struct. (Thoechem), 952, 25, 10.1016/j.theochem.2010.04.002 M. Szeląg, A. Urbaniak, H.A.R. Bluyssen, A theoretical antioxidant pharmacophore for natural hydroxycinnamic acids, (2015) 17–31. https://doi.org/10.1515/chem-2015-0001. Janak, 1978, Proof that ∂E/∂ni=εi in density-functional theory, Phys. Rev. B., 18, 7165, 10.1103/PhysRevB.18.7165 Pearson, 1988, Absolute Electronegativity and Hardness: Application to Inorganic Chemistry, Inorg. Chem., 27, 734, 10.1021/ic00277a030 Bardak, 2019, Experimental and DFT analysis of structural and spectroscopic features of nitroterephthalic acid, and computational insights into its molecular interactions with hER-α via molecular docking, J. Mol. Struct., 1175, 458, 10.1016/j.molstruc.2018.07.110 Zhou, 2019, Theoretical studies on the bond strength and electron density characteristics in multiple hydrogen bonded arrays, J. Mol. Graph. Model., 93, 10.1016/j.jmgm.2019.107439 Parr, 2002, Density functional approach to the frontier-electron theory of chemical reactivity, J. Am. Chem. Soc., 106, 4049, 10.1021/ja00326a036 Mikulski, 2010, A theoretical study of the structure–radical scavenging activity of trans-resveratrol analogues and cis-resveratrol in gas phase and water environment, Eur. J. Med. Chem., 45, 1015, 10.1016/j.ejmech.2009.11.044 Amić, 2017, Free radical scavenging potency of quercetin catecholic colonic metabolites: Thermodynamics of 2H+/2e− processes, Food Chem., 218, 144, 10.1016/j.foodchem.2016.09.018 Sadasivam, 2011, Antioxidant behavior of mearnsetin and myricetin flavonoid compounds - A DFT study, Spectrochim. Acta - Part A Mol, Biomol. Spectrosc., 79, 282, 10.1016/j.saa.2011.02.042 Mendes, 2018, A computational investigation on the antioxidant potential of myricetin 3,4′-di-O-α-L-rhamnopyranoside Ab Initio Study on Photophysics of Tris(salicylideneanilines) View project Excited Electronic States of Cyanides View project A computational investigat, J. Mol. Model., 24, 1, 10.1007/s00894-018-3663-2 Hossen, 2021, Theoretical investigations on the antioxidant potential of a non-phenolic compound thymoquinone: a DFT approach, J. Mol. Model., 27, 1, 10.1007/s00894-021-04795-0 Nazifi, 2019, Antioxidant properties of Aloe vera components: a DFT theoretical evaluation, Free Radic. Res., 53, 922, 10.1080/10715762.2019.1648798 Shang, 2019, Theoretical studies on the antioxidant activity of viniferifuran, New J. Chem., 43, 15736, 10.1039/C9NJ02735A Rouhani, 2021, Evaluation of structural properties and antioxidant capacity of Proxison: A DFT investigation, Comput. Theor. Chem., 1195, 10.1016/j.comptc.2020.113096 Toscano, 2016, Soybean aglycones antioxidant activity. A theoretical investigation, Comput. Theor. Chem., 1077, 119, 10.1016/j.comptc.2015.11.008 H.A. De Abreu, I. Aparecida dos S. Lago, G.P. Souza, D. Piló-Veloso, H.A. Duarte, A.F. de C. Alcântara, Antioxidant activity of (+)-bergenin—a phytoconstituent isolated from the bark of Sacoglottis uchi Huber (Humireaceae), Org. Biomol. Chem. 6 (2008) 2713–2718, https://doi.org/10.1039/b804385j. Eberle, 2015, What makes a strong organic electron donor (or Acceptor)?, Chem. - A Eur. J., 21, 8578, 10.1002/chem.201406597 Borgohain, 2015, Antioxidant activity of some phenolic aldehydes and their diimine derivatives: A DFT study, Comput, Theor. Chem., 1060, 17, 10.1016/j.comptc.2015.02.014 Rajan, 2017, A computational investigation on the structure, global parameters and antioxidant capacity of a polyphenol, Gallic acid, Food Chem., 220, 93, 10.1016/j.foodchem.2016.09.178 Zheng, 2017, Antioxidant activity of quercetin and its glucosides from propolis: A theoretical study, Sci. Rep., 7, 1 Shahab, 2020, Antioxidant Properties of the Phorbol: A DFT Approach, Russ. J. Phys. Chem. B, 14, 15, 10.1134/S1990793120010145 Kalita, 2012, A theoretical study on the antioxidant property of gallic acid and its derivatives, J. Theor. Comput. Chem., 11, 391, 10.1142/S0219633612500277 Hossen, 2019, Effect of microwave radiation on the antioxidant activity of black cumin seed, Food. Acta pol. Net., 18, 257 Janjua, 2009, Spectrophotometric analysis of flavonoid–DNA binding interactions at physiological conditions, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 74, 1135, 10.1016/j.saa.2009.09.022 Lu, 2012, Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem., 33, 580, 10.1002/jcc.22885 Ramesh, 2020, Spectroscopic and DFT studies, structural determination, chemical properties and molecular docking of 1-(3-bromo-2-thienyl)-3-[4-(dimethylamino)-phenyl]prop-2-en-1-one, J. Mol. Struct., 1200, 10.1016/j.molstruc.2019.127123 Prasana, 2019, Molecular docking studies, charge transfer excitation and wave function analyses (ESP, ELF, LOL) on valacyclovir: A potential antiviral drug, Comput. Biol. Chem., 78, 9, 10.1016/j.compbiolchem.2018.11.014 Galano, 2015, Free radicals induced oxidative stress at a molecular level: The current status, challenges and perspectives of computational chemistry based protocols, J. Mex. Chem. Soc., 59, 231 Li, 2013, A DFT study on reaction of eupatilin with hydroxyl radical in solution, Int. J. Quantum Chem., 113, 966, 10.1002/qua.24060