Theoretical investigation of structural, electronic and thermoelectric properties of $$p{-}n$$ type $$\hbox {Mg}_{2}\hbox {Si}_{1-x}\hbox {Sn}_{x}$$ system

Springer Science and Business Media LLC - Tập 94 - Trang 1-9 - 2019
Brahim Marfoua1, Brahim Lagoun2, Hamza Lidjici1,3, Ali Benghia2, Ahmed Gueddouh2
1Laboratoire d’étude et développement des matériaux semi-conducteurs et diélectriques, Université de Laghouat, Laghouat, Algeria
2Laboratoire de physique des matériaux, Université de Laghouat, Laghouat, Algeria
3Laboratoire des Matériaux et Procédés, Université de Valenciennes et du Hainaut-Cambrésis, Maubeuge, France

Tóm tắt

Based on the density functional theory and the Boltzmann transport theory, the thermoelectric properties of $$\hbox {Mg}_{2}\hbox {Si}_{1-x}\hbox {Sn}_{x}$$ solid solution with $$x= 0.25, 0.5 \hbox { and } 075$$ were investigated. The calculated structural parameters were in good agreement with the previous work and the mechanical and dynamical stabilities were confirmed. The electronic band structure computed using the Tran-Blaha-modified Becke and Johnson (TB-mBJ) exchange potential indicated that the band gap can be tuned by the alloy effect. We combined first-principles calculations and the semiclassical Boltzmann transport theory by considering the electronic transport in the $$\hbox {Mg}_{2}\hbox {Si}_{1-x}\hbox {Sn}_{x}$$ solid solution to determine the effect of varying the Sn composition on the thermoelectric performance. Our results have shown exceptionally high electrical conductivity for $${\hbox {Mg}}_{2}\hbox {Sn}$$ and higher Seebeck coefficient for $$\hbox {Mg}_{2}\hbox {Si}$$ . The highest figure of merit (ZT) was predicted for $$\hbox {Mg}_{2}\hbox {Si}_{1-x}\hbox {Sn}_{x}$$ solid solution with $$x = 0.5$$ where ZT has reached 0.55 with carrier concentration charge $$n = 10^{20}\hbox { cm}^{-3}$$ (p-type doping) at intermediate temperatures. Consequently, the alloying system with p-type doping may improve the thermoelectric properties compared to the $$\hbox {Mg}_{2}\hbox {Si}$$ and $$\hbox {Mg}_{2}\hbox {Sn}$$ pristine compounds.

Tài liệu tham khảo

K Benmouiza and A Cheknane, Energ. Convers. Manage. 75, 561 (2013) M B A Bashir, S M Said, M F M Sabri, D A Shnawah and M H Elsheikh, Renew. Sust. Energ. Rev. 37, 569 (2014) Ö C Yelgel, J. Alloy Compd 691, 151 (2017) X Zhang and L-D Zhao, J. Materiomics 1, 92 (2015) R Nasiraei, M Fadavieslam and H Azimi-Juybari, Pramana – J. Phys. 87: 30 (2016) L Chaput, J Bourgeois, A Prytuliak, M M Koza and H Scherrer, Phys. Rev. B 91, 064304 (2015) Ö C Yelgel and G Srivastava, Phys. Rev. B 85, 125207 (2012) T M Tritt, Ann. Rev. Mater. Res. 41, 433 (2011) M Yaghobi and F A Larijani, Pramana – J. Phys. 84, 155 (2015) P Boulet and M-C Record, J. Chem. Phys. 135, 234702 (2011) S W Finefrock, H Yang, H Fang and Y Wu, Annu. Rev. Chem. Biomol. Eng. 6, 247 (2015) L Yang, Z G Chen, M S Dargusch and J Zou, Adv. Energy Mater. 8, 1701797 (2018) G Zhang, B Kirk, L A Jauregui, H Yang, X Xu, Y P Chen and Y Wu, Nano Lett. 12, 56 (2011) O Yamashita and S Tomiyoshi, Jpn J. Appl. Phys. 42, 492 (2003) Z Dughaish, Physica B 322, 205 (2002) V Zaitsev, M Fedorov, E Gurieva, I Eremin, P Konstantinov, A Y Samunin and M Vedernikov, Phys. Rev. B 74, 045207 (2006) N V Morozova, S V Ovsyannikov, I V Korobeinikov, A E Karkin, K-i Takarabe, Y Mori, S Nakamura and V V Shchennikov, J. Appl. Phys. 115, 213705 (2014) Z Liu, M Watanabe and M Hanabusa, Thin Solid Films, 381, 262 (2001) C Li, Y Wu, H Li and X Liu, J. Alloy Compd 477, 212 (2009) H Gao, T Zhu, X Liu, L Chen and X Zhao, J. Mater. Chem. 21, 5933 (2011) P Blaha, An augmented plane wave\(+\)local orbitals program for calculating crystal properties (2001) R Godby, M Schlüter and L Sham, Phys. Rev. B 37, 10159 (1988) F Tran and P Blaha, Phys. Rev. Lett. 102, 226401 (2009) H J Monkhorst and J D Pack, Phys. Rev. B 13, 5188 (1976) A Togo, L Chaput and I Tanaka, Phys. Rev. B 91, 094306 (2015) G K Madsen and D J Singh, Comput. Phys. Commun. 175, 67 (2006) A Reshak, J. Appl. Phys. 117, 225104 (2015) D Wang, L Tang, M Long and Z Shuai, J. Chem. Phys. 131, 224704 (2009) X Tan, W Liu, H Liu, J Shi, X Tang and C Uher, Phys. Rev. B 85, 205212 (2012) L Davis, W Whitten and G Danielson, J. Phys. Chem. Solids 28, 439 (1967) K Mun Wong, S Alay-e-Abbas, Y Fang, A Shaukat and Y Lei, J. Appl. Phys. 114, 034901 (2013) R Song, T Aizawa and J Sun, Mater. Sci. Eng. B 136, 111 (2007) H Zhao, J Sui, Z Tang, Y Lan, Q Jie, D Kraemer, K McEnaney, A Guloy, G Chen and Z Ren, Nano Energy 7, 97 (2014) K Kutorasiński, J Tobola and S Kaprzyk, Phys. Rev. B 87, 195205 (2013) W Liu, X Tan, K Yin, H Liu, X Tang, J Shi, Q Zhang and C Uher, Phys. Rev. Lett. 108, 166601 (2012)