Theoretical investigation of 2D periodic nanoplasmon structures

Journal of Communications Technology and Electronics - Tập 57 - Trang 1151-1159 - 2012
A. M. Lerer1
1Southern Federal University, Rostov-on-Don, Russia

Tóm tắt

The problem of diffraction of electromagnetic waves by 2D periodic metal gratings is solved with allowance for the finite permittivity of a metal in the optical band. The developed mathematical model is based on the solution of the vector integro-differential equation of diffraction by 3D dielectric bodies by means of the Galerkin method. It is noted that the dependence of the scattered field amplitude on the wavelength has a resonance character and that the resonance wavelengths can substantially exceed the dimensions of a grating cell. The application of the method of approximate boundary conditions for the calculation of gratings containing nanodimensional metal layers is justified. It is demonstrated that a grating with small reflection and transmission factors under the plasmon-resonance conditions can be created.

Tài liệu tham khảo

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424(6950), 824 (2003).

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Phys. Reports 408(3–4), 131 (2005).

J. J. Wang, L. Chen, S. Kwan, et al., J. Vac. Sci. Technol. B, No. 23, 6 (2005).

C. Hu, Optik 122, 1881 (2011).

C. Hu and D. Liu, Optik 122, 459 (2011).

L. Salomon, F. Grillot, A. V. Zayats, and F. Fornel, Phys. Rev. Lett. 86, 1110 (2001).

F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, et al., J. Lightwave Technol. 17, 2191 (1999).

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, J. Opt. A 7(2), s97 (2005).

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, et al., Phys. Rev. Lett. 86, 1114 (2001).

M. D. Harries and H. D. Summers, IEEE Photonics Technol. Lett. 18, 2197 (2006).

A. I. Zhmakin, Phys. Rep. 498, 189 (2011).

J. Dintinger, I. Robel, P. V. Kamat, et al., Adv. Mater. 18, 1645 (2006).

W. J. Padilla, A. J. Taylor, C. Highstrete, et al., Phys. Rev. Lett. 96, 107401 (2006).

A. Degiron, J. J. Mock, and D. R. Smith, Opt. Express 15, 1115 (2007).

H.-T. Chen, J. F. O’Hara, A. K. Azad, et al., Nature Photonics 2, 295 (2008).

P. Vasa, R. Pomraenke, S. Schwieger, et al., Phys. Rev. Lett., 101, 116801 (2008).

A. Degiron and T. W. Ebbesen, J. Opt. A 7(2), s90 (2005).

V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, J. Opt. 12, 045102 (2010).

A. B. Samokhin, Integral Equations and Iteration Methods in the Electromagnetic Scattering Theory (Radio i Svyaz’, Moscow, 1998) [in Russian].

V. F. Kravchenko, O. S. Labun’ko, A. M. Lerer, and G. P. Sinyavskii, Computational Methods in Modern Radio Physics (Fizmatlit, Moscow, 2009) [in Russian].

E. V. Golovacheva, A. M. Lerer, and N. G. Parkhomenko, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron., No. 1, 6 (2011).

E. V. Golovacheva, A. M. Lerer, P. V. Makhno, and G. P. Sinyavskii, Elektromagn. Volny Elektron. Sist. 16(5), 9 (2011).

A. M. Lerer, V. V. Makhno, and P. V. Makhno, Electrodynamic Analysis of Nanostructures of Optical and Roentgen Diapasons (Academic, Saarbrucken, 2011).

http://ww.luxpop.com

A. M. Lerer, V. V. Makhno, and P. V. Makhno, Elektromagn. Volny Elektron. Sist. 10(5), 71 (2005).

A. M. Lerer, V. V. Makhno, P. V. Makhno, and A. A. Yachmenov, J. Commun. Technol. Electron. 52, 399 (2007).

D. E. Zelenchuk, A. M. Lerer, P. V. Makhno, and V. V. Makhno, Elektromagn. Volny Elektron. Sist. 12(6), 41 (2007).

I. A. Kaz’min, O. S. Labun’ko, A. M. Lerer, et al., Usp. Sovremen. Radioelektron., No. 8, 76 (2007).

D. E. Zelenchuk, I. A. Kaz’min, A. M. Lerer, et al., J. Commun. Technol. Electron. 54, 399 (2009).