Theoretical insight into optical properties of ZnGa2O4 transparent ceramic

Materials Today Communications - Tập 34 - Trang 104846 - 2023
Bin Wang1,2, Hao Wang1,2, Bingtian Tu1,2, Pengyu Xu1,2, Weimin Wang1,2, Zhengyi Fu1,2
1State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
2Hubei Longzhong Laboratory, Xiangyang, 441000, Hubei, China

Tài liệu tham khảo

Thomas, 1988, A comprehensive model for the intrinsic transmission properties of optical windows, Proc. SPIE, 929, 87, 10.1117/12.945855 Gentilman, 1986, Current and emerging materials for 3-5 mocro IR transmission, Proc. SPIE, 683, 2, 10.1117/12.936409 Krell, 2012, Influence of the structure of MgO·nAl2O3, Spine Lattices transparent Ceram. Process. Prop., J. Eur. Ceram. Soc., 32, 2887 Guo, 2020, Effects of AlN content on mechanical and optical properties of AlON transparent ceramics, Ceram. Int., 46, 16677, 10.1016/j.ceramint.2020.03.241 Zong, 2020, A novel spinel-type Mg0.55Al2.36O3.81N0.19 transparent ceramic with infrared transmittance range comparable to c-plane sapphire, Scr. Mater., 178, 428, 10.1016/j.scriptamat.2019.12.015 Thomas, 1988, Infrared transmission properties of sapphire, spinel, yttria, and ALON as a function of temperature and frequency, Appl. Opt., 27, 239, 10.1364/AO.27.000239 Goldstein, 2016, Transparent ceramics at 50: progress made and further prospects, J. Am. Ceram. Soc., 99, 3173, 10.1111/jace.14553 Hsieh, 1994, Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering, J. Appl. Phys., 76, 3735, 10.1063/1.358500 Liu, 2014, Single-crystalline, ultrathin ZnGa2O4 nanosheet scaffolds to promote photocatalytic activity in CO2 reduction into methane, ACS Appl. Mater. Interfaces, 6, 2356, 10.1021/am404572g Xue, 2013, Synthesis, microstructure, and microwave dielectric properties of spinel ZnGa2O4 ceramics, J. Am. Ceram. Soc., 96, 2481, 10.1111/jace.12331 Mével, 2021, First ZnGa2O4 transparent ceramics, J. Eur. Ceram. Soc., 41, 4934, 10.1016/j.jeurceramsoc.2021.03.038 Wang, 2021, A novel durable spinel-type ZnGa2O4 transparent ceramic with wide transmission range, Scr. Mater., 205, 10.1016/j.scriptamat.2021.114186 Tropf, 1760, Models of the optical properties of solids, Proc. SPIE, 1992, 318 Tu, 2016, Theoretical predictions of composition-dependent structure and properties of alumina-rich spinel, J. Eur. Ceram. Soc., 36, 1073, 10.1016/j.jeurceramsoc.2015.11.043 Xu, 2021, Theoretical study on composition‐dependent properties of ZnO·nAl2O3 spinels. Part I, Opt. Dielectr., J. Am. Ceram. Soc., 104, 5099, 10.1111/jace.17756 Wei, 1988, Role of metal d states in Ⅱ-Ⅳ semiconductors, Phys. Rev. B, 37, 8958, 10.1103/PhysRevB.37.8958 Clark, 2005, First principles methods using CASTEP, Z. Krist., 220, 567 Hedin, 1971, Explicit local exchange-correlation potentials, J. Phys. C: Solid St. Phys., 4, 2064, 10.1088/0022-3719/4/14/022 Ceperley, 1980, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett., 45, 566, 10.1103/PhysRevLett.45.566 Hamann, 1979, Norm-conserving pseudopotentials, Phys. Rev. Lett., 43, 1494, 10.1103/PhysRevLett.43.1494 Baroni, 2001, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys., 73, 515, 10.1103/RevModPhys.73.515 Gonze, 1997, Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B, 55, 10355, 10.1103/PhysRevB.55.10355 Galazka, 2019, Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals, 7 Fischer, 1967, Neutronenbeugungsuntersuchung der strukturen von MgAl2O4- und ZnAl2O4-spinellen, in abhängigkeit von der vorgeschichte, 124, 275 Jones, 1989, The density functional formalism, its applications and prospects, Rev. Mod. Phys., 61, 689, 10.1103/RevModPhys.61.689 Sickafus, 1999, Structure of spinel, J. Am. Ceram. Soc., 82, 3279, 10.1111/j.1151-2916.1999.tb02241.x Shannon, 1976, Revised effective ionic radii and systematic studies of interatomie distances in halides and chalcogenides, Acta Cryst., 32, 751, 10.1107/S0567739476001551 O'Neill, 1994, Crystal structures and cation distributions in simple spinels from powder XRD structural refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the temperature dependence of the cation distribution in ZnAl2O4, Phys. Chem. Miner., 20, 541, 10.1007/BF00211850 Lu, 2018, Influence of inverse spinel structured CuGa2O4 on microwave dielectric properties of normal spinel ZnGa2O4, Ceram., J. Am. Ceram. Soc., 101, 1646, 10.1111/jace.15264 O'Neill, 1983, Simple spinels crystallographic parameters, cation radii, lattice energies, Am. Mineral., 68, 181 Penda´s, 2000, Local compressibilities in crystals, Phys. Rev. B, 62, 13970, 10.1103/PhysRevB.62.13970 Goksen, 2007, Dispersive optical constants and temperature tuned band gap energy of Tl2InGaS4 layered crystals, J. Phys. Condens. Matter, 19, 10.1088/0953-8984/19/25/256210 Brik, 2010, First-principles calculations of electronic, optical and elastic properties of ZnAl2S4 and ZnGa2O4, J. Phys. Chem. Solids, 71, 1435, 10.1016/j.jpcs.2010.07.007 Sampath, 1998, Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels, J. Am. Ceram. Soc., 81, 649, 10.1111/j.1151-2916.1998.tb02385.x Omata, 1994, New ultraviolet -transport electroconductive oxide, ZnGa2O4 spinel, ApplPhysLett, 64, 1077 Bortz, 1990, Temperature dependence of the electronic structure of oxides MgO, MgAl2O4 and Al2O3, Phys. Scr., 41, 537, 10.1088/0031-8949/41/4/036 Perdew, 1983, Physical content of the exact kohn sham orbital energies: band gaps and derivative discontinuities, Phys. Rev. Lett., 51, 1884, 10.1103/PhysRevLett.51.1884 Shannon, 2002, Refractive index and dispersion of fluorides and oxides, J. Phys. Chem. Ref. Data, 31, 931, 10.1063/1.1497384 Medenbach, 2013, Refractive index and optical dispersion of In2O3, InBO3 and gahnite, Mater. Res. Bull., 48, 2240, 10.1016/j.materresbull.2013.02.057 Shannon, 2006, Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides, Phys. Rev. B, 73, 23511, 10.1103/PhysRevB.73.235111 Shannon, 2016, Empirical electronic polarizabilities of ions for the prediction and interpretation of refractive indices: oxides and oxysalts, Am. Mineral., 101, 2288, 10.2138/am-2016-5730 Savrasov, 2003, Linear response calculations of lattice dynamics in strongly correlated systems, Phys. Rev. Lett., 90, 10.1103/PhysRevLett.90.056401 Kim, 2003, Color variation of ZnGa2O4 phosphor by reduction-oxidation processes, ApplPhysLett, 82, 2029 Kim, 2004, The origin of emission color of reduced and oxidized ZnGa2O4 phosphors, Solid State Commun., 129, 163, 10.1016/j.ssc.2003.09.032 Klein, 1980, Infrared‐active phonons in cubic zinc sulfide, J. Appl. Phys., 51, 797, 10.1063/1.327295 White, 1967, Interpretation of the vibrational spectra of spinels, Spectrochim. Acta, 23, 985, 10.1016/0584-8539(67)80023-0 Chopelas, 1991, Vibrational spectroscopy of aluminate spinels at 1 atm and of MgAl2O4 to over 200 kbar, Phys. Chem. Miner., 18, 279, 10.1007/BF00200186 Ren, 2021, Investigation on composition-dependent properties of Mg5Al23−5xO27+5xN5-5x (0 ≤ x ≤ 1): Part I. optical properties via first-principles calculations, J. Eur. Ceram. Soc., 41, 1543, 10.1016/j.jeurceramsoc.2020.10.013 Erukhimovitch, 2015, Spectroscopic study of ordering in non-stoichiometric magnesium aluminate spinel, Am. Mineral., 100, 1744, 10.2138/am-2015-5266 D.C. Harris, Materials for infrared windows and domes properties and performance, SPIE Optical Engineering Press, Bellingham, Washington USA, 1999. Xu, 1991, Self-consistent band structures, charge distributions, and optical-absorption spectra in MgO, α-Al2O3, and MgAl2O4, Phys. Rev. B, 43, 4461, 10.1103/PhysRevB.43.4461 Xu, 1995, Electronic structure and optical properties of α and β phases of silicon nitride, silicon oxynitride, and with comparison to silicon dioxide, Phys. Rev. B, 51, 17379, 10.1103/PhysRevB.51.17379 Scott, 1971, Raman spectra and lattice dynamics of α-berlinite (AlPO4), Phys. Rev. B, 4, 1360, 10.1103/PhysRevB.4.1360 Gervais, 1976, Effective charges in binary and ternary oxide compounds, Solid State Commun., 18, 191, 10.1016/0038-1098(76)91451-4 Wakamura, 1980, Vibrational spectra and effective charges in some spinels, Jpn. J. Appl. Phys., 19, 249, 10.7567/JJAPS.19S3.249 Ishii, 1982, Structure and lattice vibrations of Mg-Al spinel solid solution, Phys. Chem. Miner., 8, 64, 10.1007/BF00309015