Theoretical insight into optical properties of ZnGa2O4 transparent ceramic
Tài liệu tham khảo
Thomas, 1988, A comprehensive model for the intrinsic transmission properties of optical windows, Proc. SPIE, 929, 87, 10.1117/12.945855
Gentilman, 1986, Current and emerging materials for 3-5 mocro IR transmission, Proc. SPIE, 683, 2, 10.1117/12.936409
Krell, 2012, Influence of the structure of MgO·nAl2O3, Spine Lattices transparent Ceram. Process. Prop., J. Eur. Ceram. Soc., 32, 2887
Guo, 2020, Effects of AlN content on mechanical and optical properties of AlON transparent ceramics, Ceram. Int., 46, 16677, 10.1016/j.ceramint.2020.03.241
Zong, 2020, A novel spinel-type Mg0.55Al2.36O3.81N0.19 transparent ceramic with infrared transmittance range comparable to c-plane sapphire, Scr. Mater., 178, 428, 10.1016/j.scriptamat.2019.12.015
Thomas, 1988, Infrared transmission properties of sapphire, spinel, yttria, and ALON as a function of temperature and frequency, Appl. Opt., 27, 239, 10.1364/AO.27.000239
Goldstein, 2016, Transparent ceramics at 50: progress made and further prospects, J. Am. Ceram. Soc., 99, 3173, 10.1111/jace.14553
Hsieh, 1994, Cathodoluminescent characteristics of ZnGa2O4 phosphor grown by radio frequency magnetron sputtering, J. Appl. Phys., 76, 3735, 10.1063/1.358500
Liu, 2014, Single-crystalline, ultrathin ZnGa2O4 nanosheet scaffolds to promote photocatalytic activity in CO2 reduction into methane, ACS Appl. Mater. Interfaces, 6, 2356, 10.1021/am404572g
Xue, 2013, Synthesis, microstructure, and microwave dielectric properties of spinel ZnGa2O4 ceramics, J. Am. Ceram. Soc., 96, 2481, 10.1111/jace.12331
Mével, 2021, First ZnGa2O4 transparent ceramics, J. Eur. Ceram. Soc., 41, 4934, 10.1016/j.jeurceramsoc.2021.03.038
Wang, 2021, A novel durable spinel-type ZnGa2O4 transparent ceramic with wide transmission range, Scr. Mater., 205, 10.1016/j.scriptamat.2021.114186
Tropf, 1760, Models of the optical properties of solids, Proc. SPIE, 1992, 318
Tu, 2016, Theoretical predictions of composition-dependent structure and properties of alumina-rich spinel, J. Eur. Ceram. Soc., 36, 1073, 10.1016/j.jeurceramsoc.2015.11.043
Xu, 2021, Theoretical study on composition‐dependent properties of ZnO·nAl2O3 spinels. Part I, Opt. Dielectr., J. Am. Ceram. Soc., 104, 5099, 10.1111/jace.17756
Wei, 1988, Role of metal d states in Ⅱ-Ⅳ semiconductors, Phys. Rev. B, 37, 8958, 10.1103/PhysRevB.37.8958
Clark, 2005, First principles methods using CASTEP, Z. Krist., 220, 567
Hedin, 1971, Explicit local exchange-correlation potentials, J. Phys. C: Solid St. Phys., 4, 2064, 10.1088/0022-3719/4/14/022
Ceperley, 1980, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett., 45, 566, 10.1103/PhysRevLett.45.566
Hamann, 1979, Norm-conserving pseudopotentials, Phys. Rev. Lett., 43, 1494, 10.1103/PhysRevLett.43.1494
Baroni, 2001, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys., 73, 515, 10.1103/RevModPhys.73.515
Gonze, 1997, Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B, 55, 10355, 10.1103/PhysRevB.55.10355
Galazka, 2019, Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals, 7
Fischer, 1967, Neutronenbeugungsuntersuchung der strukturen von MgAl2O4- und ZnAl2O4-spinellen, in abhängigkeit von der vorgeschichte, 124, 275
Jones, 1989, The density functional formalism, its applications and prospects, Rev. Mod. Phys., 61, 689, 10.1103/RevModPhys.61.689
Sickafus, 1999, Structure of spinel, J. Am. Ceram. Soc., 82, 3279, 10.1111/j.1151-2916.1999.tb02241.x
Shannon, 1976, Revised effective ionic radii and systematic studies of interatomie distances in halides and chalcogenides, Acta Cryst., 32, 751, 10.1107/S0567739476001551
O'Neill, 1994, Crystal structures and cation distributions in simple spinels from powder XRD structural refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the temperature dependence of the cation distribution in ZnAl2O4, Phys. Chem. Miner., 20, 541, 10.1007/BF00211850
Lu, 2018, Influence of inverse spinel structured CuGa2O4 on microwave dielectric properties of normal spinel ZnGa2O4, Ceram., J. Am. Ceram. Soc., 101, 1646, 10.1111/jace.15264
O'Neill, 1983, Simple spinels crystallographic parameters, cation radii, lattice energies, Am. Mineral., 68, 181
Penda´s, 2000, Local compressibilities in crystals, Phys. Rev. B, 62, 13970, 10.1103/PhysRevB.62.13970
Goksen, 2007, Dispersive optical constants and temperature tuned band gap energy of Tl2InGaS4 layered crystals, J. Phys. Condens. Matter, 19, 10.1088/0953-8984/19/25/256210
Brik, 2010, First-principles calculations of electronic, optical and elastic properties of ZnAl2S4 and ZnGa2O4, J. Phys. Chem. Solids, 71, 1435, 10.1016/j.jpcs.2010.07.007
Sampath, 1998, Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels, J. Am. Ceram. Soc., 81, 649, 10.1111/j.1151-2916.1998.tb02385.x
Omata, 1994, New ultraviolet -transport electroconductive oxide, ZnGa2O4 spinel, ApplPhysLett, 64, 1077
Bortz, 1990, Temperature dependence of the electronic structure of oxides MgO, MgAl2O4 and Al2O3, Phys. Scr., 41, 537, 10.1088/0031-8949/41/4/036
Perdew, 1983, Physical content of the exact kohn sham orbital energies: band gaps and derivative discontinuities, Phys. Rev. Lett., 51, 1884, 10.1103/PhysRevLett.51.1884
Shannon, 2002, Refractive index and dispersion of fluorides and oxides, J. Phys. Chem. Ref. Data, 31, 931, 10.1063/1.1497384
Medenbach, 2013, Refractive index and optical dispersion of In2O3, InBO3 and gahnite, Mater. Res. Bull., 48, 2240, 10.1016/j.materresbull.2013.02.057
Shannon, 2006, Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides, Phys. Rev. B, 73, 23511, 10.1103/PhysRevB.73.235111
Shannon, 2016, Empirical electronic polarizabilities of ions for the prediction and interpretation of refractive indices: oxides and oxysalts, Am. Mineral., 101, 2288, 10.2138/am-2016-5730
Savrasov, 2003, Linear response calculations of lattice dynamics in strongly correlated systems, Phys. Rev. Lett., 90, 10.1103/PhysRevLett.90.056401
Kim, 2003, Color variation of ZnGa2O4 phosphor by reduction-oxidation processes, ApplPhysLett, 82, 2029
Kim, 2004, The origin of emission color of reduced and oxidized ZnGa2O4 phosphors, Solid State Commun., 129, 163, 10.1016/j.ssc.2003.09.032
Klein, 1980, Infrared‐active phonons in cubic zinc sulfide, J. Appl. Phys., 51, 797, 10.1063/1.327295
White, 1967, Interpretation of the vibrational spectra of spinels, Spectrochim. Acta, 23, 985, 10.1016/0584-8539(67)80023-0
Chopelas, 1991, Vibrational spectroscopy of aluminate spinels at 1 atm and of MgAl2O4 to over 200 kbar, Phys. Chem. Miner., 18, 279, 10.1007/BF00200186
Ren, 2021, Investigation on composition-dependent properties of Mg5Al23−5xO27+5xN5-5x (0 ≤ x ≤ 1): Part I. optical properties via first-principles calculations, J. Eur. Ceram. Soc., 41, 1543, 10.1016/j.jeurceramsoc.2020.10.013
Erukhimovitch, 2015, Spectroscopic study of ordering in non-stoichiometric magnesium aluminate spinel, Am. Mineral., 100, 1744, 10.2138/am-2015-5266
D.C. Harris, Materials for infrared windows and domes properties and performance, SPIE Optical Engineering Press, Bellingham, Washington USA, 1999.
Xu, 1991, Self-consistent band structures, charge distributions, and optical-absorption spectra in MgO, α-Al2O3, and MgAl2O4, Phys. Rev. B, 43, 4461, 10.1103/PhysRevB.43.4461
Xu, 1995, Electronic structure and optical properties of α and β phases of silicon nitride, silicon oxynitride, and with comparison to silicon dioxide, Phys. Rev. B, 51, 17379, 10.1103/PhysRevB.51.17379
Scott, 1971, Raman spectra and lattice dynamics of α-berlinite (AlPO4), Phys. Rev. B, 4, 1360, 10.1103/PhysRevB.4.1360
Gervais, 1976, Effective charges in binary and ternary oxide compounds, Solid State Commun., 18, 191, 10.1016/0038-1098(76)91451-4
Wakamura, 1980, Vibrational spectra and effective charges in some spinels, Jpn. J. Appl. Phys., 19, 249, 10.7567/JJAPS.19S3.249
Ishii, 1982, Structure and lattice vibrations of Mg-Al spinel solid solution, Phys. Chem. Miner., 8, 64, 10.1007/BF00309015