Theoretical and numerical analysis of void coalescence in porous ductile solids under arbitrary loadings

International Journal of Plasticity - Tập 91 - Trang 160-181 - 2017
M.E. Torki1, C. Tekog̃lu2, J.-B. Leblond3, A.A. Benzerga1,4
1Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA
2Department of Mechanical Engineering, TOBB University of Economics and Technology, Sög̃ütözü, Ankara, 06560, Turkey
3Sorbonne Universites, UPMC Univ Paris 06, CNRS, UMR 7190 Institut Jean Le Rond d’Alembert, F-75005, Paris, France
4Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA

Tài liệu tham khảo

Barsoum, 2007, Rupture mechanisms in combined tension and shear-experiments, Int. J. Solids Struct., 44, 1768, 10.1016/j.ijsolstr.2006.09.031 Barsoum, 2007, Rupture mechanisms in combined tension and shear-micromechanics, Int. J. Solids Struct., 44, 5481, 10.1016/j.ijsolstr.2007.01.010 Barsoum, 2011, Micromechanical analysis on the influence of the lode parameter on void growth and coalescence, Int. J. Solids Struct., 48, 925, 10.1016/j.ijsolstr.2010.11.028 Benzerga, 2000 Benzerga, 2002, Micromechanics of coalescence in ductile fracture, J. Mech. Phys. Solids, 50, 1331, 10.1016/S0022-5096(01)00125-9 Benzerga, 2001, Plastic potentials for anisotropic porous solids, Eur. J. Mech., 20A, 397, 10.1016/S0997-7538(01)01147-0 Benzerga, 2010, Ductile fracture by void growth to coalescence, Adv. Appl. Mech., 44, 169, 10.1016/S0065-2156(10)44003-X Benzerga, 2014, Effective yield criterion accounting for microvoid coalescence, J. Appl. Mech., 81, 031009, 10.1115/1.4024908 Benzerga, 1999, Coalescence–controlled anisotropic ductile fracture, J. Eng. Mater. Technol., 121, 221, 10.1115/1.2812369 Benzerga, 2002, Synergistic effects of plastic anisotropy and void coalescence on fracture mode in plane strain, Model. Simul. Mater. Sci. Eng., 10, 73, 10.1088/0965-0393/10/1/306 Benzerga, 2004, Anisotropic ductile fracture. Part II: theory, Acta Mater., 52, 4639, 10.1016/j.actamat.2004.06.019 Benzerga, 2016, Ductile failure modeling, Int. J. Fract., 201, 29, 10.1007/s10704-016-0142-6 Danas, 2012, Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials, Int. J. Solids Struct., 49, 1325, 10.1016/j.ijsolstr.2012.02.006 Dunand, 2011, Optimized butterfly specimen for the fracture testing of sheet materials under combined normal and shear loading, Eng. Fract. Mech., 78, 2919, 10.1016/j.engfracmech.2011.08.008 Dunand, 2014, Effect of Lode parameter on plastic flow localization after proportional loading at low stress triaxialities, J. Mech. Phys. Solids, 66, 133, 10.1016/j.jmps.2014.01.008 Fritzen, 2012, Computational homogenization of elasto-plastic porous metals, Int. J. Plast., 29, 102, 10.1016/j.ijplas.2011.08.005 Gologanu, 2001, Theoretical models for void coalescence in porous ductile solids – I: coalescence in “layers”, Int. J. Solids Struct., 38, 5581, 10.1016/S0020-7683(00)00354-1 Gurson, 1977, Continuum theory of ductile rupture by void nucleation and growth: Part I– yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99, 2, 10.1115/1.3443401 Hure, 2016, Theoretical estimates for flat voids coalescence by internal necking, Eur. J. Mech., 60, 217, 10.1016/j.euromechsol.2016.08.001 Keralavarma, 2010, A constitutive model for plastically anisotropic solids with non-spherical voids, J. Mech. Phys. Solids, 58, 874, 10.1016/j.jmps.2010.03.007 Keralavarma, 2016, A criterion for void coalescence in anisotropic ductile materials, Int. J. Plast., 82, 159, 10.1016/j.ijplas.2016.03.003 Koplik, 1988, Void growth and coalescence in porous plastic solids, Int. J. Solids Struct., 24, 835, 10.1016/0020-7683(88)90051-0 Leblond, 2008, A theoretical approach of strain localization within thin planar bands in porous ductile materials, Comptes Rendus Mec., 336, 176, 10.1016/j.crme.2007.11.008 Liu, 2016, Void behaviors from low to high triaxialities: transition from void collapse to void coalescence, Int. J. Plast., 84, 183, 10.1016/j.ijplas.2016.05.008 Madou, 2012, A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids – I: limit-analysis of some representative cell, J. Mech. Phys. Solids, 60, 1020, 10.1016/j.jmps.2011.11.008 Madou, 2013, Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids — I: yield surfaces of representative cells, Eur. J. Mech., 42, 480, 10.1016/j.euromechsol.2013.06.004 Morin, 2015, Coalescence of voids by internal necking: theoretical estimates and numerical results, J. Mech. Phys. Solids, 75, 140, 10.1016/j.jmps.2014.11.009 Morin, 2016, A unified criterion for the growth and coalescence of microvoids, J. Mech. Phys. Solids, 97, 19, 10.1016/j.jmps.2016.01.013 Nielsen, 2012, Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D, Int. J. Fract., 177, 97, 10.1007/s10704-012-9757-4 Pardoen, 2000, An extended model for void growth and coalescence, J. Mech. Phys. Solids, 48, 2467, 10.1016/S0022-5096(00)00019-3 Pineau, 2016, Failure of metals I. Brittle and ductile fracture, Acta Mater., 107, 424, 10.1016/j.actamat.2015.12.034 Rice, 1976, The localization of plastic deformation, 207 Scheyvaerts, 2011, The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension, J. Mech. Phys. Solids, 59, 373, 10.1016/j.jmps.2010.10.003 Tekog̃lu, 2014, Representative volume element calculations under constant stress triaxiality, lode parameter, and shear ratio, Int. J. Solids Struct., 51, 4544, 10.1016/j.ijsolstr.2014.09.001 Tekog̃lu, 2012, A criterion for the onset of void coalescence under combined tension and shear, J. Mech. Phys. Solids, 60, 1363, 10.1016/j.jmps.2012.02.006 Thomason, 1985, Three–dimensional models for the plastic limit–loads at incipient failure of the intervoid matrix in ductile porous solids, Acta Metall., 33, 1079, 10.1016/0001-6160(85)90201-9 Torki, 2015, On void coalescence under combined tension and shear, J. Appl. Mech., 82, 071005, 10.1115/1.4030326 Tvergaard, 2012, Effect of stress-state and spacing on voids in a shear-field, Int. J. Solids Struct., 49, 3047, 10.1016/j.ijsolstr.2012.06.008