Theoretical and numerical analysis of void coalescence in porous ductile solids under arbitrary loadings
Tài liệu tham khảo
Barsoum, 2007, Rupture mechanisms in combined tension and shear-experiments, Int. J. Solids Struct., 44, 1768, 10.1016/j.ijsolstr.2006.09.031
Barsoum, 2007, Rupture mechanisms in combined tension and shear-micromechanics, Int. J. Solids Struct., 44, 5481, 10.1016/j.ijsolstr.2007.01.010
Barsoum, 2011, Micromechanical analysis on the influence of the lode parameter on void growth and coalescence, Int. J. Solids Struct., 48, 925, 10.1016/j.ijsolstr.2010.11.028
Benzerga, 2000
Benzerga, 2002, Micromechanics of coalescence in ductile fracture, J. Mech. Phys. Solids, 50, 1331, 10.1016/S0022-5096(01)00125-9
Benzerga, 2001, Plastic potentials for anisotropic porous solids, Eur. J. Mech., 20A, 397, 10.1016/S0997-7538(01)01147-0
Benzerga, 2010, Ductile fracture by void growth to coalescence, Adv. Appl. Mech., 44, 169, 10.1016/S0065-2156(10)44003-X
Benzerga, 2014, Effective yield criterion accounting for microvoid coalescence, J. Appl. Mech., 81, 031009, 10.1115/1.4024908
Benzerga, 1999, Coalescence–controlled anisotropic ductile fracture, J. Eng. Mater. Technol., 121, 221, 10.1115/1.2812369
Benzerga, 2002, Synergistic effects of plastic anisotropy and void coalescence on fracture mode in plane strain, Model. Simul. Mater. Sci. Eng., 10, 73, 10.1088/0965-0393/10/1/306
Benzerga, 2004, Anisotropic ductile fracture. Part II: theory, Acta Mater., 52, 4639, 10.1016/j.actamat.2004.06.019
Benzerga, 2016, Ductile failure modeling, Int. J. Fract., 201, 29, 10.1007/s10704-016-0142-6
Danas, 2012, Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials, Int. J. Solids Struct., 49, 1325, 10.1016/j.ijsolstr.2012.02.006
Dunand, 2011, Optimized butterfly specimen for the fracture testing of sheet materials under combined normal and shear loading, Eng. Fract. Mech., 78, 2919, 10.1016/j.engfracmech.2011.08.008
Dunand, 2014, Effect of Lode parameter on plastic flow localization after proportional loading at low stress triaxialities, J. Mech. Phys. Solids, 66, 133, 10.1016/j.jmps.2014.01.008
Fritzen, 2012, Computational homogenization of elasto-plastic porous metals, Int. J. Plast., 29, 102, 10.1016/j.ijplas.2011.08.005
Gologanu, 2001, Theoretical models for void coalescence in porous ductile solids – I: coalescence in “layers”, Int. J. Solids Struct., 38, 5581, 10.1016/S0020-7683(00)00354-1
Gurson, 1977, Continuum theory of ductile rupture by void nucleation and growth: Part I– yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., 99, 2, 10.1115/1.3443401
Hure, 2016, Theoretical estimates for flat voids coalescence by internal necking, Eur. J. Mech., 60, 217, 10.1016/j.euromechsol.2016.08.001
Keralavarma, 2010, A constitutive model for plastically anisotropic solids with non-spherical voids, J. Mech. Phys. Solids, 58, 874, 10.1016/j.jmps.2010.03.007
Keralavarma, 2016, A criterion for void coalescence in anisotropic ductile materials, Int. J. Plast., 82, 159, 10.1016/j.ijplas.2016.03.003
Koplik, 1988, Void growth and coalescence in porous plastic solids, Int. J. Solids Struct., 24, 835, 10.1016/0020-7683(88)90051-0
Leblond, 2008, A theoretical approach of strain localization within thin planar bands in porous ductile materials, Comptes Rendus Mec., 336, 176, 10.1016/j.crme.2007.11.008
Liu, 2016, Void behaviors from low to high triaxialities: transition from void collapse to void coalescence, Int. J. Plast., 84, 183, 10.1016/j.ijplas.2016.05.008
Madou, 2012, A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids – I: limit-analysis of some representative cell, J. Mech. Phys. Solids, 60, 1020, 10.1016/j.jmps.2011.11.008
Madou, 2013, Numerical studies of porous ductile materials containing arbitrary ellipsoidal voids — I: yield surfaces of representative cells, Eur. J. Mech., 42, 480, 10.1016/j.euromechsol.2013.06.004
Morin, 2015, Coalescence of voids by internal necking: theoretical estimates and numerical results, J. Mech. Phys. Solids, 75, 140, 10.1016/j.jmps.2014.11.009
Morin, 2016, A unified criterion for the growth and coalescence of microvoids, J. Mech. Phys. Solids, 97, 19, 10.1016/j.jmps.2016.01.013
Nielsen, 2012, Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D, Int. J. Fract., 177, 97, 10.1007/s10704-012-9757-4
Pardoen, 2000, An extended model for void growth and coalescence, J. Mech. Phys. Solids, 48, 2467, 10.1016/S0022-5096(00)00019-3
Pineau, 2016, Failure of metals I. Brittle and ductile fracture, Acta Mater., 107, 424, 10.1016/j.actamat.2015.12.034
Rice, 1976, The localization of plastic deformation, 207
Scheyvaerts, 2011, The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension, J. Mech. Phys. Solids, 59, 373, 10.1016/j.jmps.2010.10.003
Tekog̃lu, 2014, Representative volume element calculations under constant stress triaxiality, lode parameter, and shear ratio, Int. J. Solids Struct., 51, 4544, 10.1016/j.ijsolstr.2014.09.001
Tekog̃lu, 2012, A criterion for the onset of void coalescence under combined tension and shear, J. Mech. Phys. Solids, 60, 1363, 10.1016/j.jmps.2012.02.006
Thomason, 1985, Three–dimensional models for the plastic limit–loads at incipient failure of the intervoid matrix in ductile porous solids, Acta Metall., 33, 1079, 10.1016/0001-6160(85)90201-9
Torki, 2015, On void coalescence under combined tension and shear, J. Appl. Mech., 82, 071005, 10.1115/1.4030326
Tvergaard, 2012, Effect of stress-state and spacing on voids in a shear-field, Int. J. Solids Struct., 49, 3047, 10.1016/j.ijsolstr.2012.06.008