Phân tích lý thuyết và số học cho động lực truyền bệnh COVID-19 dựa trên mô hình toán học liên quan đến đạo hàm Caputo–Fabrizio

Sabri T. M. Thabet1, Mohammed S. Abdo2, Kamal Shah3
1Department of Mathematics, University of Aden, Aden, Yemen
2Department of Mathematics, Hodeidah University, Hodeidah, Yemen
3Department of Mathematics, University of Malakand, Chakdara, Dir(L), KPK, Pakistan

Tóm tắt

Tóm tắt

Bài viết này tập trung vào nghiên cứu sự tồn tại và duy nhất của các nghiệm cho một mô hình toán học liên quan đến động lực truyền bệnh truyền nhiễm coronavirus-19 (COVID-19). Mô hình đã đề cập được xem xét với một đạo hàm dạng hạt nhân phi kỳ có chỉ số cấp thấp do Caputo–Fabrizio cung cấp. Để đạt được kết quả cần thiết về sự tồn tại và duy nhất của nghiệm cho mô hình đề xuất, phương pháp lặp Picard đã được áp dụng. Hơn nữa, để điều tra các nghiệm gần đúng cho mô hình đề xuất, chúng tôi sử dụng biến đổi Laplace và phân hoạch Adomian (LADM). Một số biểu diễn đồ họa được cung cấp cho các chỉ số cấp thấp khác nhau cho các thành phần khác nhau của mô hình đang xem xét.

Từ khóa

#COVID-19 #mô hình toán học #đạo hàm Caputo–Fabrizio #phương pháp lặp Picard #biến đổi Laplace #phân hoạch Adomian

Tài liệu tham khảo

Jeffrey, S.K., Kenneth, M.: History and recent advances in coronavirus discovery. Pediatr. Infect. Dis. J. 24(11), 223–227 (2005) https://doi.org/10.1097/01.inf.0000188166.17324.60

Feng, Z., Castillo-Chavez, C., Capurro, A.F.: A model for tuberculosis with exogenous reinfection. Theor. Popul. Biol. 57(3), 235–247 (2000) https://doi.org/10.1006/tpbi.2000.1451

Kumar, S., Kumar, R., Singh, J., Nisar, K.S., Kumar, D.: An efficient numerical scheme for fractional model of HIV-1 infection of CD4+ T-cells with the effect of antiviral drug therapy. Alex. Eng. J. 59(4), 2053–2064 (2020)

Ndairou, F., Area, I., Nieto, J.J., Torres, D.F.: Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos Solitons Fractals 2020, 109846 (2020)

Syafruddin, S., Noorani, M.S.M.: SEIR model for transmission of Dengue fever in Selangor Malaysia. Int. J. Mod. Phys. Conf. Ser. 9, 380–389 (2011) https://doi.org/10.1142/S2010194512005454

Tahir, M., Shah, I.S.A., Zaman, G., Khan, T.: Prevention strategies for mathematical model MERS-corona virus with stability analysis and optimal control. J. Nanosc. Nanotechnol. Appl. 3(1), 1–11 (2018)

Cao, J., Jiang, X., Zhao, B.: Mathematical modeling and epidemic prediction of COVID-19 and its significance to epidemic prevention and control measures. J. Biomed. Res. Innov. 1(1), 1–19 (2020)

Chowell, G., Blumberg, S., Simonsen, L., Miller, M.A., Viboud, C.: Synthesizing data and models for the spread of MERS-CoV, 2013: key role of index cases and hospital transmission. Epidemics 9, 40–51 (2014)

Den, V., Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002) https://doi.org/10.1016/s0025-5564(02)00108-6

Fanelli, D., Piazza, F.: Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos Solitons Fractals 2020, 134–109761 (2020)

Jung, S.M., Akhmetzhanov, A.R., Hayashi, K., Linton, N.M., Yang, Y., Yuan, B., Nishiura, H.: Real-time estimation of the risk of death from novel coronavirus (COVID-19) infection: inference using exported cases. J. Clin. Med. 9, 523 (2020). https://doi.org/10.3390/jcm9020523

Kim, Y., Lee, S., Chu, C., Choe, S., Hong, S., Shin, Y.: The characteristics of Middle Eastern respiratory syndrome coronavirus transmission dynamics in South Korea. Osong Public Health Res. Perspect. 7, 49–55 (2016). https://doi.org/10.1016/j.phrp.2016.01.001

Lin, Q., Zhao, S., Gao, D., Lou, Y., Yang, S., Musa, S.S., Wang, M., Cai, Y., Wang, W., Yang, L., He, D.: A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. Int. J. Infect. Dis. 93, 211–216 (2020)

Kilbas, A.A., Shrivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

Rihan, F.A., Al-Mdallal, Q.M., AlSakaji, H.J., Hashish, A.: A fractional-order epidemic model with time-delay and nonlinear incidence rate. Chaos Solitons Fractals 126, 97–105 (2019)

Shah, K., Alqudah, M.A., Jarad, F., Abdeljawad, T.: Semi-analytical study of Pine Wilt disease model with convex rate under Caputo–Fabrizio fractional order derivative. Chaos Solitons Fractals 135, 109754 (2020)

Abdeljawad, T., Al-Mdallal, Q.M., Jarad, F.: Fractional logistic models in the frame of fractional operators generated by conformable derivatives. Chaos Solitons Fractals 119, 94–101 (2019)

Ivorra, B., Ferrndez, M.R., Vela-Pérez, M., Ramos, A.M.: Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China. Commun. Nonlinear Sci. Numer. Simul. 88, 105303 (2020) https://doi.org/10.1016/j.cnsns.2020.105303

Shah, K., Abdeljawad, T., Mahariq, I., Jarad, F.: Qualitative analysis of a mathematical model in the time of COVID-19. BioMed Res. Int. 2020 (2020) doi.10.1155/2020/5098598

Ali, G., Nazir, G., Shah, K., Li, Y.: Existence theory and novel iterative method for dynamical system of infectious diseases. Discrete Dyn. Nat. Soc. 2020 (2020) doi.10.1155/2020/8709393

Baleanu, D., Aydogn, S.M., Mohammadi, H., Rezapour, S.: On modelling of epidemic childhood diseases with the Caputo–Fabrizio derivative by using the Laplace Adomian decomposition method. Alex. Eng. J. 59(5), 3029–3039 (2020) https://doi.org/10.1016/j.aej.2020.05.007

Baleanu, D., Mohammadi, H., Rezapour, S.: A fractional differential equation model for the COVID-19 transmission by using the Caputo–Fabrizio derivative. Adv. Differ. Equ. 2020(1), 1 (2020) https://doi.org/10.1186/s13662-020-02762-2

Chen, T.M., Rui, J., Wang, Q.P., Cui, J.A., Yin, L.: A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect. Dis. Poverty 9(1), 24 (2020). https://doi.org/10.1186/s40249-020-00640-3

Maier, B.F., Brockmann, D.: Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science 368(6492), 742–746 (2020). https://doi.org/10.1126/science.abb4557

Abdo, M.S., Shah, K., Wahash, H.A., Panchal, S.K.: On a comprehensive model of the novel Coronavirus (COVID-19) under Mittag-Leffler derivative. Chaos Solitons Fractals 2020, 135–109867 (2020) https://doi.org/10.1016/j.chaos.2020.109867

Abdulwasaa, M.A., Abdo, M.S., Shah, K., Nofal, T.A., Panchal, S.K., Kawale, S.V., Abdel-Aty, A.H.: Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India. Results Phys. 20, 103702 (2020) https://doi.org/10.1016/j.rinp.2020.103702

Redhwan, S.S., Abdo, M.S., Shah, K., Abdeljawad, T., Dawood, S., Abdo, H.A., Shaikh, S.L.: Mathematical modeling for the outbreak of the coronavirus (COVID-19) under fractional nonlocal operator. Results Phys. 19, 103610 (2020) https://doi.org/10.1016/j.rinp.2020.103610

Trilla, A.: One world, one health: the novel coronavirus COVID-19 epidemic. Med. Clin. (Barc.) 154(5), 175–177 (2020) https://doi.org/10.1016/j.medcle.2020.02.001

Wong, G., Liu, W., Liu, Y., Zhou, B., Bi, Y., Gao, G.F.: MERS, SARS, and Ebola: the role of super-spreaders in infectious disease. Cell Host Microbe 18(4), 398–401 (2015) https://doi.org/10.1016/j.chom.2015.09.013

Borah, M.J., Hazarika, B., Panda, S.K., Nieto, J.J.: Examining the correlation between the weather conditions and COVID-19 pandemic in India: a mathematical evidence. Results Phys. 19, 103587 (2020)

Panda, S.K.: Applying fixed point methods and fractional operators in the modelling of novel coronavirus 2019-nCoV/SARS-CoV-2. Results Phys. 19, 103433 (2020)

Atangana, A.: Modelling the spread of COVID-19 with new fractal-fractional operators: can the lockdown save mankind before vaccination? Chaos Solitons Fractals 136, 109860 (2020)

Khan, M.A., Atangana, A.: Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative. Alex. Eng. J. 59(4), 2379–2389 (2020)

Naik, P.A., Yavuz, M., Qureshi, S., Zu, J., Townley, S.: Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan. Eur. Phys. J. Plus 135(10), 1–42 (2020)

Memon, Z., Qureshi, S., Memon, B.R.: Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: a case study. Chaos Solitons Fractals 144, 110655 (2021)

Atangana, E., Atangana, A.: Facemasks simple but powerful weapons to protect against COVID-19 spread: can they have sides effects?. Results Phys. 19, 103425 (2020)

Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 1–13 (2015) https://doi.org/10.12785/pfda/010201

Bas, E., Acay, B., Ozarslan, R.: Fractional models with singular and non-singular kernels for energy efficient buildings. Chaos, Interdiscip. J. Nonlinear Sci. 29(2), 023110 (2019)

Abdon, A., Baleanu, D.: Caputo–Fabrizio derivative applied to groundwater flow within confined aquifer. J. Eng. Mech. 143(5), D4016005 (2017)

Atangana, A., Alkahtani, B.S.T.: Analysis of the Keller–Segel model with a fractional derivative without singular kernel. Entropy 17(6), 4439–4453 (2015)

Khan, M.A., Hammouch, Z., Baleanu, D.: Modeling the dynamics of hepatitis E via the Caputo–Fabrizio derivative. Math. Model. Nat. Phenom. 14(3), 311 (2019)

Koca, I.: Analysis of rubella disease model with non-local and non-singular fractional derivatives. Int. J. Optim. Control Theor. Appl. 8(1), 17–25 (2018)

Hussain, A., Baleanu, D., Adeel, M.: Existence of solution and stability for the fractional order novel coronavirus (nCoV-2019) model. Adv. Differ. Equ. 2020, 384 (2020)

Thabet, S.T.M., Abdo, M.S., Shah, K., Abdeljawad, T.: Study of transmission dynamics of COVID-19 mathematical model under ABC fractional order derivative. Results Phys. 19, 103507 (2020)

Shah, N.H., Suthar, A.H., Jayswal, E.N.: Control strategies to curtail transmission of COVID-19. Int. J. Math. Math. Sci. 2020, 12 (2020). https://doi.org/10.1155/2020/2649514

Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 87–92 (2015). https://doi.org/10.12785/pfda/010202

Lyons, R., Vatsala, A., Chiquet, R.: Picard’s iterative method for Caputo fractional differential equations with numerical results. Mathematics 5(4), 65 (2017)

Rida, S.Z., Arafa, A.A.M., Gaber, Y.A.: Solution of the fractional epidemic model by L-ADM. J. Fract. Calc. Appl. 7(1), 189–195 (2016)

Shah, K., Abdeljawad, T., Jarad, F.: On a nonlinear fractional order model of Dengue fever disease under Caputo–Fabrizio derivative. Alex. Eng. J. 59(4), 2305–2313 (2020)