Phân tích lý thuyết và số học cho động lực truyền bệnh COVID-19 dựa trên mô hình toán học liên quan đến đạo hàm Caputo–Fabrizio
Tóm tắt
Từ khóa
#COVID-19 #mô hình toán học #đạo hàm Caputo–Fabrizio #phương pháp lặp Picard #biến đổi Laplace #phân hoạch AdomianTài liệu tham khảo
Jeffrey, S.K., Kenneth, M.: History and recent advances in coronavirus discovery. Pediatr. Infect. Dis. J. 24(11), 223–227 (2005) https://doi.org/10.1097/01.inf.0000188166.17324.60
Feng, Z., Castillo-Chavez, C., Capurro, A.F.: A model for tuberculosis with exogenous reinfection. Theor. Popul. Biol. 57(3), 235–247 (2000) https://doi.org/10.1006/tpbi.2000.1451
Kumar, S., Kumar, R., Singh, J., Nisar, K.S., Kumar, D.: An efficient numerical scheme for fractional model of HIV-1 infection of CD4+ T-cells with the effect of antiviral drug therapy. Alex. Eng. J. 59(4), 2053–2064 (2020)
Ndairou, F., Area, I., Nieto, J.J., Torres, D.F.: Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan. Chaos Solitons Fractals 2020, 109846 (2020)
Syafruddin, S., Noorani, M.S.M.: SEIR model for transmission of Dengue fever in Selangor Malaysia. Int. J. Mod. Phys. Conf. Ser. 9, 380–389 (2011) https://doi.org/10.1142/S2010194512005454
Tahir, M., Shah, I.S.A., Zaman, G., Khan, T.: Prevention strategies for mathematical model MERS-corona virus with stability analysis and optimal control. J. Nanosc. Nanotechnol. Appl. 3(1), 1–11 (2018)
Cao, J., Jiang, X., Zhao, B.: Mathematical modeling and epidemic prediction of COVID-19 and its significance to epidemic prevention and control measures. J. Biomed. Res. Innov. 1(1), 1–19 (2020)
Chowell, G., Blumberg, S., Simonsen, L., Miller, M.A., Viboud, C.: Synthesizing data and models for the spread of MERS-CoV, 2013: key role of index cases and hospital transmission. Epidemics 9, 40–51 (2014)
Den, V., Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002) https://doi.org/10.1016/s0025-5564(02)00108-6
Fanelli, D., Piazza, F.: Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos Solitons Fractals 2020, 134–109761 (2020)
Jung, S.M., Akhmetzhanov, A.R., Hayashi, K., Linton, N.M., Yang, Y., Yuan, B., Nishiura, H.: Real-time estimation of the risk of death from novel coronavirus (COVID-19) infection: inference using exported cases. J. Clin. Med. 9, 523 (2020). https://doi.org/10.3390/jcm9020523
Kim, Y., Lee, S., Chu, C., Choe, S., Hong, S., Shin, Y.: The characteristics of Middle Eastern respiratory syndrome coronavirus transmission dynamics in South Korea. Osong Public Health Res. Perspect. 7, 49–55 (2016). https://doi.org/10.1016/j.phrp.2016.01.001
Lin, Q., Zhao, S., Gao, D., Lou, Y., Yang, S., Musa, S.S., Wang, M., Cai, Y., Wang, W., Yang, L., He, D.: A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. Int. J. Infect. Dis. 93, 211–216 (2020)
Kilbas, A.A., Shrivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Rihan, F.A., Al-Mdallal, Q.M., AlSakaji, H.J., Hashish, A.: A fractional-order epidemic model with time-delay and nonlinear incidence rate. Chaos Solitons Fractals 126, 97–105 (2019)
Shah, K., Alqudah, M.A., Jarad, F., Abdeljawad, T.: Semi-analytical study of Pine Wilt disease model with convex rate under Caputo–Fabrizio fractional order derivative. Chaos Solitons Fractals 135, 109754 (2020)
Abdeljawad, T., Al-Mdallal, Q.M., Jarad, F.: Fractional logistic models in the frame of fractional operators generated by conformable derivatives. Chaos Solitons Fractals 119, 94–101 (2019)
Ivorra, B., Ferrndez, M.R., Vela-Pérez, M., Ramos, A.M.: Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China. Commun. Nonlinear Sci. Numer. Simul. 88, 105303 (2020) https://doi.org/10.1016/j.cnsns.2020.105303
Shah, K., Abdeljawad, T., Mahariq, I., Jarad, F.: Qualitative analysis of a mathematical model in the time of COVID-19. BioMed Res. Int. 2020 (2020) doi.10.1155/2020/5098598
Ali, G., Nazir, G., Shah, K., Li, Y.: Existence theory and novel iterative method for dynamical system of infectious diseases. Discrete Dyn. Nat. Soc. 2020 (2020) doi.10.1155/2020/8709393
Baleanu, D., Aydogn, S.M., Mohammadi, H., Rezapour, S.: On modelling of epidemic childhood diseases with the Caputo–Fabrizio derivative by using the Laplace Adomian decomposition method. Alex. Eng. J. 59(5), 3029–3039 (2020) https://doi.org/10.1016/j.aej.2020.05.007
Baleanu, D., Mohammadi, H., Rezapour, S.: A fractional differential equation model for the COVID-19 transmission by using the Caputo–Fabrizio derivative. Adv. Differ. Equ. 2020(1), 1 (2020) https://doi.org/10.1186/s13662-020-02762-2
Chen, T.M., Rui, J., Wang, Q.P., Cui, J.A., Yin, L.: A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect. Dis. Poverty 9(1), 24 (2020). https://doi.org/10.1186/s40249-020-00640-3
Maier, B.F., Brockmann, D.: Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science 368(6492), 742–746 (2020). https://doi.org/10.1126/science.abb4557
Abdo, M.S., Shah, K., Wahash, H.A., Panchal, S.K.: On a comprehensive model of the novel Coronavirus (COVID-19) under Mittag-Leffler derivative. Chaos Solitons Fractals 2020, 135–109867 (2020) https://doi.org/10.1016/j.chaos.2020.109867
Abdulwasaa, M.A., Abdo, M.S., Shah, K., Nofal, T.A., Panchal, S.K., Kawale, S.V., Abdel-Aty, A.H.: Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India. Results Phys. 20, 103702 (2020) https://doi.org/10.1016/j.rinp.2020.103702
Redhwan, S.S., Abdo, M.S., Shah, K., Abdeljawad, T., Dawood, S., Abdo, H.A., Shaikh, S.L.: Mathematical modeling for the outbreak of the coronavirus (COVID-19) under fractional nonlocal operator. Results Phys. 19, 103610 (2020) https://doi.org/10.1016/j.rinp.2020.103610
Trilla, A.: One world, one health: the novel coronavirus COVID-19 epidemic. Med. Clin. (Barc.) 154(5), 175–177 (2020) https://doi.org/10.1016/j.medcle.2020.02.001
Wong, G., Liu, W., Liu, Y., Zhou, B., Bi, Y., Gao, G.F.: MERS, SARS, and Ebola: the role of super-spreaders in infectious disease. Cell Host Microbe 18(4), 398–401 (2015) https://doi.org/10.1016/j.chom.2015.09.013
Borah, M.J., Hazarika, B., Panda, S.K., Nieto, J.J.: Examining the correlation between the weather conditions and COVID-19 pandemic in India: a mathematical evidence. Results Phys. 19, 103587 (2020)
Panda, S.K.: Applying fixed point methods and fractional operators in the modelling of novel coronavirus 2019-nCoV/SARS-CoV-2. Results Phys. 19, 103433 (2020)
Atangana, A.: Modelling the spread of COVID-19 with new fractal-fractional operators: can the lockdown save mankind before vaccination? Chaos Solitons Fractals 136, 109860 (2020)
Khan, M.A., Atangana, A.: Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative. Alex. Eng. J. 59(4), 2379–2389 (2020)
Naik, P.A., Yavuz, M., Qureshi, S., Zu, J., Townley, S.: Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan. Eur. Phys. J. Plus 135(10), 1–42 (2020)
Memon, Z., Qureshi, S., Memon, B.R.: Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: a case study. Chaos Solitons Fractals 144, 110655 (2021)
Atangana, E., Atangana, A.: Facemasks simple but powerful weapons to protect against COVID-19 spread: can they have sides effects?. Results Phys. 19, 103425 (2020)
Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 1–13 (2015) https://doi.org/10.12785/pfda/010201
Bas, E., Acay, B., Ozarslan, R.: Fractional models with singular and non-singular kernels for energy efficient buildings. Chaos, Interdiscip. J. Nonlinear Sci. 29(2), 023110 (2019)
Abdon, A., Baleanu, D.: Caputo–Fabrizio derivative applied to groundwater flow within confined aquifer. J. Eng. Mech. 143(5), D4016005 (2017)
Atangana, A., Alkahtani, B.S.T.: Analysis of the Keller–Segel model with a fractional derivative without singular kernel. Entropy 17(6), 4439–4453 (2015)
Khan, M.A., Hammouch, Z., Baleanu, D.: Modeling the dynamics of hepatitis E via the Caputo–Fabrizio derivative. Math. Model. Nat. Phenom. 14(3), 311 (2019)
Koca, I.: Analysis of rubella disease model with non-local and non-singular fractional derivatives. Int. J. Optim. Control Theor. Appl. 8(1), 17–25 (2018)
Hussain, A., Baleanu, D., Adeel, M.: Existence of solution and stability for the fractional order novel coronavirus (nCoV-2019) model. Adv. Differ. Equ. 2020, 384 (2020)
Thabet, S.T.M., Abdo, M.S., Shah, K., Abdeljawad, T.: Study of transmission dynamics of COVID-19 mathematical model under ABC fractional order derivative. Results Phys. 19, 103507 (2020)
Shah, N.H., Suthar, A.H., Jayswal, E.N.: Control strategies to curtail transmission of COVID-19. Int. J. Math. Math. Sci. 2020, 12 (2020). https://doi.org/10.1155/2020/2649514
Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 87–92 (2015). https://doi.org/10.12785/pfda/010202
Lyons, R., Vatsala, A., Chiquet, R.: Picard’s iterative method for Caputo fractional differential equations with numerical results. Mathematics 5(4), 65 (2017)
Rida, S.Z., Arafa, A.A.M., Gaber, Y.A.: Solution of the fractional epidemic model by L-ADM. J. Fract. Calc. Appl. 7(1), 189–195 (2016)