Theoretical and experimental vibroacoustic analysis of advanced hybrid structure (CNT/luffa/epoxy)

Acta Mechanica - Tập 234 - Trang 5603-5619 - 2023
Erukala Kalyan Kumar1, Vikash Kumar1, Nitin Sharma2, Hukum Chand Dewangan3, Ashish Kumar Meher1, Subrata Kumar Panda1,4
1Department of Mechanical Engineering, National Institute of Technology, Rourkela, Rourkela, India
2School of Mechanical Engineering, KIIT, Bhubaneswar, India
3Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, India
4UCRD, Chandigarh University, Mohali, India

Tóm tắt

This study presents the vibroacoustic analysis of a hybrid epoxy composite panel reinforced with advanced multi-walled carbon nanotubes (MW-CNTs) and luffa fibre. The vibroacoustic responses were obtained numerically, and the model validity was verified with experimental values. The responses were analysed under the stimulus of harmonic point excitation, considering ambient conditions, using a coupled finite element–boundary element (FE–BE) model. To ensure the accuracy and stability of the numerical model, the different structural responses, including natural and thermal frequency, of hybrid composite plates, were evaluated and compared with data from published literature. In addition, experimentation was conducted, and the results were compared with the numerically derived model to demonstrate the model’s effectiveness. Furthermore, several numerical examples were solved using the numerical model to illustrate its applicability and enhance understanding. The results obtained from the experimental investigation showed that adding luffa fibre and MW-CNTs to the composite panel improved its sound transmission loss and absorption coefficient. Overall, the results suggest that the hybrid composite panel has excellent vibroacoustic performance and can be used in various engineering applications that require lightweight, high-strength materials with good damping and noise reduction properties.

Tài liệu tham khảo

Zhao, X., Zhang, B., Li, Y.: Vibration and acoustic radiation of an orthotropic composite cylindrical shell in a hygroscopic environment. JVC/J. Vib. Control. 23, 673–692 (2017). https://doi.org/10.1177/1077546315581943 Li, X., Yu, K., Han, J., Song, H., Zhao, R.: Buckling and vibro-acoustic response of the clamped composite laminated plate in thermal environment. Int. J. Mech. Sci. 119, 370–382 (2016). https://doi.org/10.1016/j.ijmecsci.2016.10.021 Civalek, Ö.: Analysis of thick rectangular plates with symmetric cross-ply laminates based on first-order shear deformation theory. J. Compos. Mater. 42, 2853–2867 (2008). https://doi.org/10.1177/0021998308096952 Arunkumar, M.P., Bhagat, V., Geng, Q., Ning, J., Li, Y.: An analytical solution for vibro-acoustic characteristics of sandwich panel with 3DGrF core and FG-CNT reinforced polymer composite face sheets. Aerosp. Sci. Technol. 119, 107091 (2021). https://doi.org/10.1016/j.ast.2021.107091 Tang, Y., Tang, Y., Wang, X., Zhou, T., Li, H.: Study on underwater vibro-acoustic characteristics of carbon/glass hybrid composite laminates. Rev. Adv. Mater. Sci. 60, 966–979 (2021). https://doi.org/10.1515/rams-2021-0072 Mejdi, A., Atalla, N.: Vibroacoustic analysis of laminated composite panels stiffened by complex laminated composite stiffeners. Int. J. Mech. Sci. 58, 13–26 (2012). https://doi.org/10.1016/j.ijmecsci.2012.02.003 Amichi, K., Atalla, N., Ruokolainen, R.: A new 3D finite element sandwich plate for predicting the vibroacoustic response of laminated steel panels. Finite Elem. Anal. Des. 46, 1131–1145 (2010). https://doi.org/10.1016/j.finel.2010.07.002 Sun, Y., Yang, T., Chen, Y.: Sound radiation modes of cylindrical surfaces and their application to vibro-acoustics analysis of cylindrical shells. J. Sound Vib. 424, 64–77 (2018). https://doi.org/10.1016/j.jsv.2018.03.004 George, N., Pitchaimani, J., Murigendrappa, S.M., Lenin Babu, M.C.: Vibro-acoustic behavior of functionally graded carbon nanotube reinforced polymer nanocomposite plates. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 232, 566–581 (2018). https://doi.org/10.1177/1464420716640301 Chronopoulos, D., Troclet, B., Ichchou, M., Lainé, J.P.: A unified approach for the broadband vibroacoustic response of composite shells. Compos. Part B Eng. 43, 1837–1846 (2012). https://doi.org/10.1016/j.compositesb.2012.01.059 Sharma, N., Mahapatra, T.R., Panda, S.K.: Vibro-acoustic behaviour of shear deformable laminated composite flat panel using BEM and the higher order shear deformation theory. Compos. Struct. 180, 116–129 (2017). https://doi.org/10.1016/j.compstruct.2017.08.012 Amichi, K., Atalla, N., Ruokolainen, R.: An efficient sandwich plate element for predicting the vibro-acoustic response of laminated steel panels. In: ASME 2008 Noise Control and Acoustics Division Conference. pp. 389–396. ASMEDC (2008) Klepka, A., Pieczonka, L., Staszewski, W.J., Aymerich, F.: Impact damage detection in laminated composites by non-linear vibro-acoustic wave modulations. Compos. Part B Eng. 65, 99–108 (2014). https://doi.org/10.1016/j.compositesb.2013.11.003 Zhang, H., Shi, D., Zha, S., Wang, Q.: Vibro-acoustic analysis of the thin laminated rectangular plate-cavity coupling system. Compos. Struct. 189, 570–585 (2018). https://doi.org/10.1016/j.compstruct.2018.01.099 Cheong, T.W., Zheng, L.W.: Vibroacoustic performance of composite honeycomb structures. Noise Control Eng. J. 54, 251 (2006). https://doi.org/10.3397/1.2219896 Alhijazi, M., Safaei, B., Zeeshan, Q., Asmael, M., Eyvazian, A., Qin, Z.: Recent developments in Luffa natural fiber composites: review. Sustainability (2020). https://doi.org/10.3390/su12187683 Danu, S., Saini, N.K., Sharma, H., Studies, E.: Composites for Vibro-Acoustics-A Review Composites for Vibro-Acoustics-A Review. (2019) Zhang, J., Khatibi, A.A., Castanet, E., Baum, T., Komeily-Nia, Z., Vroman, P., Wang, X.: Effect of natural fibre reinforcement on the sound and vibration damping properties of bio-composites compression moulded by nonwoven mats. Compos. Commun. 13, 12–17 (2019). https://doi.org/10.1016/j.coco.2019.02.002 Genc, G., Koruk, H.: Investigation of the vibro-acoustic behaviors of luffa bio composites and assessment of their use for practical applications. 23rd Int Congr. Sound Vib. 2016, 1–8 (2016) Genc, G., Koruk, H.: Effects of machining on the acoustic and mechanical properties of jute and luffa biocomposites. Cellul. Fibre Reinf. Compos. 343–355 (2023). doi:https://doi.org/10.1016/B978-0-323-90125-3.00006-9 Satankar, R.K., Sharma, N., Panda, S.K.: Multiphysical theoretical prediction and experimental verification of vibroacoustic responses of fruit fiber-reinforced polymeric composite. Polym. Compos. 41, 4461–4477 (2020). https://doi.org/10.1002/pc.25724 Koruk, H., Genc, G.: Investigation of the acoustic properties of bio luffa fiber and composite materials. Mater. Lett. 157, 166–168 (2015). https://doi.org/10.1016/j.matlet.2015.05.071 Saygili, Y., Genc, G., Sanliturk, K.Y., Koruk, H.: Investigation of the Acoustic and Mechanical Properties of Homogenous and Hybrid Jute and Luffa Bio Composites. J. Nat. Fibers 19, 1217–1225 (2022). https://doi.org/10.1080/15440478.2020.1764446 Thilagavathi, G., Neela Krishnan, S., Muthukumar, N., Krishnan, S.: Investigations on sound absorption properties of luffa fibrous mats. J. Nat. Fibers 15, 445–451 (2018). https://doi.org/10.1080/15440478.2017.1349016 Adeyanju, C.A., Ogunniyi, S., Ighalo, J.O., Adeniyi, A.G., Abdulkareem, S.A.: A review on Luffa fibres and their polymer composites. J. Mater. Sci. 56, 2797–2813 (2021). https://doi.org/10.1007/s10853-020-05432-6 Noroozi, M., Zajkani, A., Ghadiri, M.: Dynamic plastic impact behavior of CNTs/fiber/polymer multiscale laminated composite doubly curved shells. Int. J. Mech. Sci. 195, 106223 (2021). doi:https://doi.org/10.1016/j.ijmecsci.2020.106223 Liu, Y., Kumar, S.: Polymer_Carbon nanotube nano composite fibers—a review. ACS Appl. Mater. Interfaces (2014). https://doi.org/10.1021/am405136s Zhang, L.W., Selim, B.A.: Vibration analysis of CNT-reinforced thick laminated composite plates based on Reddy’s higher-order shear deformation theory. Compos. Struct. 160, 689–705 (2017). https://doi.org/10.1016/j.compstruct.2016.10.102 Pan, S., Dai, Q., Safaei, B., Qin, Z., Chu, F.: Damping characteristics of carbon nanotube reinforced epoxy nanocomposite beams. Thin-Walled Struct. 166, 108127 (2021). https://doi.org/10.1016/j.tws.2021.108127 Erukala, K.K., Mishra, P.K., Dewangan, H.C., Panda, S.K., Dwivedi, M.: Damaged composite structural strength enhancement under elevated thermal environment using shape memory alloy fiber. Acta Mech. 233, 3133–3155 (2022). https://doi.org/10.1007/s00707-022-03272-w Kumar, E.K., Panda, S.K., Dwivedi, M., Mahmoud, S.R., Balubaid, M.: Numerical thermal frequency prediction of smart composite structure and experimental validation. Structures 47, 2408–2421 (2023). https://doi.org/10.1016/j.istruc.2022.12.066 Kumar, E.K., Sharma, N., Panda, S.K., Mahmoud, S.R.: Numerical prediction of thermal buckling load parameters of damaged polymeric layered composite structure and reversal of strength using SMA fibre. Arch. Appl. Mech. 92, 3829–3845 (2022). https://doi.org/10.1007/s00419-022-02265-4 Balakrishnan, B., Raja, S., Rajagopal, A.: Influence of MWCNT fillers on vibroacoustic characteristics of polymer nanocomposite and coated aircraft panels. Appl. Acoust. 172, 107604 (2021). https://doi.org/10.1016/j.apacoust.2020.107604 Civalek, Ö.: Free vibration analysis of composite conical shells using the discrete singular convolution algorithm. Steel Compos. Struct. 6, 353–366 (2006). https://doi.org/10.12989/scs.2006.6.4.353 Civalek, Ö.: The determination of frequencies of laminated conical shells via the discrete singular convolution method. J. Mech. Mater. Struct. 1, 163–182 (2006). https://doi.org/10.2140/jomms.2006.1.163 Civalek, Ö.: A four-node discrete singular convolution for geometric transformation and its application to numerical solution of vibration problem of arbitrary straight-sided quadrilateral plates. Appl. Math. Model. 33, 300–314 (2009). https://doi.org/10.1016/j.apm.2007.11.003 Civalek, Ö.: Free vibration and buckling analyses of composite plates with straight-sided quadrilateral domain based on DSC approach. Finite Elem. Anal. Des. 43, 1013–1022 (2007). https://doi.org/10.1016/j.finel.2007.06.014 Tao, Y., Chen, C., Kiani, Y.: Frequency analysis of smart sandwich cylindrical panels with nanocomposite core and piezoelectric face sheets. Acta Mech. 234, 3219–3240 (2023). https://doi.org/10.1007/s00707-023-03557-8 Sadripour, S., Jafari-Talookolaei, R.A., Malekjafarian, A.: An efficient nine-node quadrilateral element for free vibration analysis of deep doubly curved soft-core sandwich shells. Acta Mech. 234, 4111–4145 (2023). https://doi.org/10.1007/s00707-023-03550-1 Khoa, N.D.: Free vibration and nonlinear dynamic behaviors of the imperfect smart electric magnetic FG-laminated composite panel in a hygrothermal environments. Acta Mech. 234, 2617–2658 (2023). https://doi.org/10.1007/s00707-023-03505-6 Civalek, Ö.: Harmonic differential quadrature-finite differences coupled approaches for geometrically nonlinear static and dynamic analysis of rectangular plates on elastic foundation. J. Sound Vib. 294, 966–980 (2006). https://doi.org/10.1016/j.jsv.2005.12.041 Civalek, Ö., Ülker, M.: Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates. Struct. Eng. Mech. 17, 1–14 (2004). https://doi.org/10.12989/sem.2004.17.1.001 Ersoy, H., Mercan, K., Civalek, Ö.: Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods. Compos. Struct. 183, 7–20 (2018). https://doi.org/10.1016/j.compstruct.2016.11.051 Mercan, K., Demir, Ç., Civalek, Ö.: Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique. Curved Layer. Struct. 3, 82–90 (2016). https://doi.org/10.1515/cls-2016-0007 Chiker, Y., Bachene, M., Attaf, B., Hafaifa, A., Guemana, M.: Uncertainty influence of nanofiller dispersibilities on the free vibration behavior of multi-layered functionally graded carbon nanotube-reinforced composite laminated plates. Acta Mech. 234, 1687–1711 (2023). https://doi.org/10.1007/s00707-022-03438-6 John, B.O., Hassan, F.U., George, N., Chacko, T., Bhagat, V., Jeyaraj, P., Reddy, K.K., R: Thermal buckling and vibro-acoustic behaviour of functionally graded graphene polymer layered composites subjected to in-plane temperature variance. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 236, 1541–1556 (2022). https://doi.org/10.1177/14644207221075130 Kumar, V., Dewangan, H.C., Sharma, N., Panda, S.K.: Numerical prediction of static and vibration responses of damaged (crack and delamination) laminated shell structure: an experimental verification. Mech. Syst. Signal Process. 170, 108883 (2022). https://doi.org/10.1016/j.ymssp.2022.108883 Kalyan, E., Subrata, K., Panda, K., Mohammed, S.R.M.: Influence of active SMA fibre on deflection recovery characteristics of damaged laminated composite theoretical and experimental analysis. Fibers Polym. (2023). https://doi.org/10.1007/s12221-023-00277-7 Satankar, R.K., Sharma, N., Ramteke, P.M., Panda, S.K., Mahapatra, S.S.: Acoustic responses of natural fibre reinforced nanocomposite structure using multiphysics approach and experimental validation. Adv. Nano Res. 9, 263–276 (2020). https://doi.org/10.12989/anr.2020.9.4.263 Zhu, P., Lei, Z.X., Liew, K.M.: Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos. Struct. 94, 1450–1460 (2012). https://doi.org/10.1016/j.compstruct.2011.11.010