Theoretical and Experimental Studies of CoGa Catalysts for the Hydrogenation of CO2 to Methanol

Catalysis Letters - Tập 148 - Trang 3583-3591 - 2018
Joseph A. Singh1, Ang Cao2,3, Julia Schumann2,3, Tao Wang2,3, Jens K. Nørskov2,3, Frank Abild-Pedersen2,3, Stacey F. Bent3
1Department of Chemistry Stanford University Stanford USA
2SLAC National Accelerator Laboratory, SUNCAT Center for Interface Science and Catalysis, Menlo Park, USA
3Department of Chemical Engineering, Stanford University, Stanford, USA

Tóm tắt

Methanol is an important chemical compound which is used both as a fuel and as a platform molecule in chemical production. Synthesizing methanol, as well as dimethyl ether, directly from carbon dioxide and hydrogen produced using renewable electricity would be a major step forward in enabling an environmentally sustainable economy. We utilize density functional theory combined with microkinetic modeling to understand the methanol synthesis reaction mechanism on a model CoGa catalyst. A series of catalysts with varying Ga content are synthesized and experimentally tested for catalytic performance. The performance of these catalysts is sensitive to the Co:Ga ratio, whereby increased Ga content results in increased methanol and dimethyl ether selectivity and increased Co content results in increased selectivity towards methane. We find that the most active catalysts have up to 95% CO-free selectivity towards methanol and dimethyl ether during CO2 hydrogenation and are comparable in performance to a commercial CuZn catalyst. Using in situ DRIFTS we experimentally verify the presence of a surface formate intermediate during CO2 hydrogenation in support of our theoretical calculations.

Tài liệu tham khảo

Olah GA, Goeppert A, Prakash GKS (2009) J Org Chem 74:487–498 Schumann J, Lunkenbein T, Tarasov A et al (2014) ChemCatChem 6:2889–2897 Sharafutdinov I, Elkjær CF, De Carvalho HWP et al (2014) J Catal 320:77–88 Studt F, Sharafutdinov I, Abild-Pedersen F et al (2014) Nat Chem 6:320–324 Bonivardi AL, Chiavassa DL, Querini CA et al (2000) Stud Surf Sci Catal 130:3747–3752 Collins SE, Delgado JJ, Mira C et al (2012) J Catal 292:90–98 Fujitani T, Saito M, Kanai Y et al (1993) Chem Lett 22:1079–1080 Toyir J, Ramírez de la Piscina P, Fierro JLG et al (2001) Appl Catal B 34:255–266 Ning X, An Z, He J (2016) J Catal 340:236–247 An Z, Ning X, He J (2017) J Catal 356:157–164 Giannozzi P, Baroni S, Bonini N et al (2009) J Phys Condens Matter 21:395502 Bahn SR, Jacobsen KW (2002) Comput Sci Eng 4:56–66 Wellendorff J, Lundgaard KT, Møgelhøj A et al (2012) Phys Rev B 85:32–34 Wellendorff J, Silbaugh TL, Garcia-Pintos D et al (2015) Surf Sci 640:36–44 Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901–9904 Medford AJ, Shi C, Hoffmann MJ et al (2015) Catal Lett 145:794–807 Lausche AC, Medford AJ, Khan TS et al (2013) J Catal 307:275–282 Schumann J, Medford AJ, Yoo JS et al (2018) ACS Catal 8:3447–3453 Medford AJ, Lausche AC, Abild-Pedersen F et al (2014) Top Catal 57:135–142 Singh JA, Yang N, Liu X et al (2018) J Phys Chem C 122:2184–2194 Abild-Pedersen F, Greeley J, Studt F et al (2007) Phys Rev Lett 99:016105 Studt F, Behrens M, Kunkes EL et al (2015) ChemCatChem 7:1105–1111 Petre A, Auroux A, Gélin P et al (2001) Thermochim Acta 379:177–185 Zhang Y, Jacobs G, Sparks DE et al (2002) Catal Today 71:411–418 Das T, Deo G (2011) J Mol Catal A 350:75–82 Fisher IA, Bell AT (1998) J Catal 178:153–173 Toomes RL, King DA (1996) Surf Sci 349:1–18 Abild-Pedersen F, Andersson MP (2007) Surf Sci 601:1747–1753 Weststrate CJ, van de Loosdrecht J, Niemantsverdriet JW (2016) J Catal 342:1–16