Theoretical and Experimental Studies of CoGa Catalysts for the Hydrogenation of CO2 to Methanol
Tóm tắt
Methanol is an important chemical compound which is used both as a fuel and as a platform molecule in chemical production. Synthesizing methanol, as well as dimethyl ether, directly from carbon dioxide and hydrogen produced using renewable electricity would be a major step forward in enabling an environmentally sustainable economy. We utilize density functional theory combined with microkinetic modeling to understand the methanol synthesis reaction mechanism on a model CoGa catalyst. A series of catalysts with varying Ga content are synthesized and experimentally tested for catalytic performance. The performance of these catalysts is sensitive to the Co:Ga ratio, whereby increased Ga content results in increased methanol and dimethyl ether selectivity and increased Co content results in increased selectivity towards methane. We find that the most active catalysts have up to 95% CO-free selectivity towards methanol and dimethyl ether during CO2 hydrogenation and are comparable in performance to a commercial CuZn catalyst. Using in situ DRIFTS we experimentally verify the presence of a surface formate intermediate during CO2 hydrogenation in support of our theoretical calculations.
Tài liệu tham khảo
Olah GA, Goeppert A, Prakash GKS (2009) J Org Chem 74:487–498
Schumann J, Lunkenbein T, Tarasov A et al (2014) ChemCatChem 6:2889–2897
Sharafutdinov I, Elkjær CF, De Carvalho HWP et al (2014) J Catal 320:77–88
Studt F, Sharafutdinov I, Abild-Pedersen F et al (2014) Nat Chem 6:320–324
Bonivardi AL, Chiavassa DL, Querini CA et al (2000) Stud Surf Sci Catal 130:3747–3752
Collins SE, Delgado JJ, Mira C et al (2012) J Catal 292:90–98
Fujitani T, Saito M, Kanai Y et al (1993) Chem Lett 22:1079–1080
Toyir J, Ramírez de la Piscina P, Fierro JLG et al (2001) Appl Catal B 34:255–266
Ning X, An Z, He J (2016) J Catal 340:236–247
An Z, Ning X, He J (2017) J Catal 356:157–164
Giannozzi P, Baroni S, Bonini N et al (2009) J Phys Condens Matter 21:395502
Bahn SR, Jacobsen KW (2002) Comput Sci Eng 4:56–66
Wellendorff J, Lundgaard KT, Møgelhøj A et al (2012) Phys Rev B 85:32–34
Wellendorff J, Silbaugh TL, Garcia-Pintos D et al (2015) Surf Sci 640:36–44
Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901–9904
Medford AJ, Shi C, Hoffmann MJ et al (2015) Catal Lett 145:794–807
Lausche AC, Medford AJ, Khan TS et al (2013) J Catal 307:275–282
Schumann J, Medford AJ, Yoo JS et al (2018) ACS Catal 8:3447–3453
Medford AJ, Lausche AC, Abild-Pedersen F et al (2014) Top Catal 57:135–142
Singh JA, Yang N, Liu X et al (2018) J Phys Chem C 122:2184–2194
Abild-Pedersen F, Greeley J, Studt F et al (2007) Phys Rev Lett 99:016105
Studt F, Behrens M, Kunkes EL et al (2015) ChemCatChem 7:1105–1111
Petre A, Auroux A, Gélin P et al (2001) Thermochim Acta 379:177–185
Zhang Y, Jacobs G, Sparks DE et al (2002) Catal Today 71:411–418
Das T, Deo G (2011) J Mol Catal A 350:75–82
Fisher IA, Bell AT (1998) J Catal 178:153–173
Toomes RL, King DA (1996) Surf Sci 349:1–18
Abild-Pedersen F, Andersson MP (2007) Surf Sci 601:1747–1753
Weststrate CJ, van de Loosdrecht J, Niemantsverdriet JW (2016) J Catal 342:1–16