Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion
Tóm tắt
Từ khóa
Tài liệu tham khảo
Nonnemacher, T. F., Metzler, R., On the Riemann-Liouville fractional calculus and some recent applications, Fractals, 1995, 3(3): 557–566.
Mainardi, F., Fractional calculus: some basic problems in continuum and statistical mechanics, in Fractals and Fractional Calculus in Continuum Mechanics (eds. Cappinteri, A., Mainardi, F.), New York: Springer Wien, 1997, 291–348.
Roasikhin, Y. A., Shitikova, M. V., Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev., 1997, 50(1): 15–67.
Podlubny, I., Fractional Differential Equations, San Diego: Academic Press, 1999, 86–231.
Bagley, R. L., Torvik, P. J., On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 1984. 51(2): 294–298.
Mathai, A. M., Saxena, R. K., The H-function with Applications in Statistics and Other Disciplines, New Delhi-Bangalore- Bombay: Wiley Eastern Limited, 1978, 1–12.
Gorenflo, R., Luchko. Y., Mainardi, F., Wright function as scale-invariant solutions of the diffusion-wave equation, J. Comput. Appl. Math., 2000, 118(1): 175–191.
Yih, C. S., Fluid Mechanics: A Concise Introduction to the Theory, New York: MeGraw-Hill, Inc., 1969, 321–324.
Wu Wangyi, Fluid Mechanics (in Chinese), Beijing: Peking Univ. Press, 1983, 226–230.
Mainad, F., Gorenflo, R., On Mittag-Leffler-Type function in fractional evolution processes. J. Comput. Appl. Math. 2000, 118(2): 283–299.
Anhand, V. V., Leonenko, N. N., Scaling law for fractional diffusion-wave equations with singular data, Statistics and Probability Letters, 2000, 48(3): 239–252.