Theoretical Predictions of the Interfacial Stress Transfer in Nanotube-Reinforced Polymer Nanocomposites by Using a Strain-Hardening Shear-Lag Model
Tóm tắt
Interfacial load transfer inside nanofiber-reinforced polymer nanocomposites plays a vital role in capitalizing on the extraordinary mechanical properties of the added nanofibers and in governing their bulk mechanical performance. In this paper, we investigate the load transfer characteristics of nanotube–polymer interfaces by using a micromechanics shear-lag model that takes into account the elastoplastic properties of polymer matrices. Closed-form analytical solutions of the interfacial shear stress distribution profile are derived. The failure of the nanotube–polymer interface and the pull-out force are analyzed using this model based on recently reported nanomechanical single-nanotube pull-out experiments that were conducted on carbon nanotube and boron nitride nanotube polymer interfaces. The theoretical predictions are in good agreement with experimental measurements. The findings from this work are useful to a better understanding of the interfacial load transfer characteristics of nanofiber-reinforced polymer nanocomposites and ultimately contribute to the optimal design and performance of lightweight and high-strength nanocomposite materials. The presented micromechanics model and the analytical solutions can be extended to study the interfacial stress transfer inside 1D nanofiber-reinforced metal and ceramic nanocomposites as well as of 2D material based composites and devices.
Tài liệu tham khảo
S. Iijima, Nature 354, 56 (1991)
A. Rubio, J.L. Corkill, M.L. Cohen, Phys. Rev. B 49, 5081 (1994)
N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Science 269, 966 (1995)
M. Moniruzzaman, K.I. Winey, Macromolecules 39, 5194 (2006)
Q. Cheng, B. Wang, C. Zhang, Z. Liang, Small Weinh. Bergstr. Ger. 6, 763 (2010)
C. Zhi, Y. Bando, T. Terao, C. Tang, H. Kuwahara, D. Golberg, Adv. Funct. Mater. 19, 1857 (2009)
X. Chen, L. Zhang, C. Park, C.C. Fay, X. Wang, C. Ke, Appl. Phys. Lett. 107, 253105 (2015)
M.L. Minus, H.G. Chae, S. Kumar, Polymer 47, 3705 (2006)
Y. Zhang, K. Song, J. Meng, M.L. Minus, A.C.S. Appl, Mater. Interfaces 5, 807 (2013)
X. Tao, L. Dong, X. Wang, W. Zhang, B.J. Nelson, X. Li, Adv. Mater. 22, 2055 (2010)
H.D. Wagner, O. Lourie, Y. Feldman, R. Tenne, Appl. Phys. Lett. 72, 188 (1998)
C.A. Cooper, S.R. Cohen, A.H. Barber, H.D. Wagner, Appl. Phys. Lett. 81, 3873 (2002)
A.H. Barber, S.R. Cohen, H.D. Wagner, Appl. Phys. Lett. 82, 4140 (2003)
A.H. Barber, S.R. Cohen, S. Kenig, H.D. Wagner, Compos. Sci. Technol. 64, 2283 (2004)
A.H. Barber, S.R. Cohen, A. Eitan, L.S. Schadler, H.D. Wagner, Adv. Mater. 18, 83 (2006)
M.P. Manoharan, A. Sharma, A.V. Desai, M.A. Haque, C.E. Bakis, K.W. Wang, Nanotechnology 20, 295701 (2009)
T. Tsuda, T. Ogasawara, F. Deng, N. Takeda, Compos. Sci. Technol. 71, 1295 (2011)
Y. Ganesan, C. Peng, Y. Lu, P.E. Loya, P. Moloney, E. Barrera, B.I. Yakobson, J.M. Tour, R. Ballarini, J. Lou, ACS Appl. Mater. Interfaces. 3, 129 (2011)
X. Chen, M. Zheng, C. Park, C. Ke, Small 9, 3345 (2013)
Y. Ganesan, H. Salahshoor, C. Peng, V. Khabashesku, J. Zhang, A. Cate, N. Rahbar, J. Lou, J. Appl. Phys. 115, 224305 (2014)
X. Chen, L. Zhang, M. Zheng, C. Park, X. Wang, C. Ke, Carbon 82, 214 (2015)
B.A. Newcomb, H.G. Chae, P.V. Gulgunje, K. Gupta, Y. Liu, D.E. Tsentalovich, M. Pasquali, S. Kumar, Polymer 55, 2734 (2014)
D. Roy, S. Bhattacharyya, A. Rachamim, A. Plati, M.-L. Saboungi, J. Appl. Phys. 107, 043501 (2010)
B. Soumendu, H. Abhilash, C.H. Beng, Proc. R. Soc. Math. Phys. Eng. Sci. 474, 20170705 (2018)
H.L. Cox, Br. J. Appl. Phys. 3, 72 (1952)
C.-H. Hsueh, Mater. Sci. Eng. A 125, 67 (1990)
C.-H. Hsueh, Mater. Sci. Eng. A 154, 125 (1992)
X.-L. Gao, K. Li, Int. J. Solids Struct. 42, 1649 (2005)
C.M. Landis, R.M. McMeeking, Compos. Sci. Technol. 59, 447 (1999)
K.R. Jiang, L.S. Penn, Compos. Sci. Technol. 45, 89 (1992)
T. Ozkan, Q. Chen, I. Chasiotis, Compos. Sci. Technol. 72, 965 (2012)
P. Moy, C.A. Gunnarsson, T. Weerasooriya, W. Chen, Dynamic Behavior of Material, vol. 1 (Springer, New York, 2011), pp. 125–133
R.E. Gorga, R.E. Cohen, J. Polym. Sci. Part B Polym. Phys. 42, 2690 (2004)
E.T. Kopesky, G.H. McKinley, R.E. Cohen, Polymer 47, 299 (2006)
V. Sankar, T.S. Kumar, K.P. Rao, Trends Biomater Artif Organs 17(2), 24 (2004)
F. Povolo, É.B. Hermida, J. Appl. Polym. Sci. 58, 55 (1995)
M. Nasraoui, P. Forquin, L. Siad, A. Rusinek, Mater. Des. 37, 500 (2012)
D. Rittel, N. Eliash, J.L. Halary, Polymer 44, 2817 (2003)
Epon Resin Structural Reference Manual, Epon Resin Structural Reference Manual (Resolution Performance Products LLC, 2001)
W.-F. Chen, D.J. Han, Plasticity for Structural Engineers (J. Ross Publishing, Fort Lauderdale, 2007)
M.W. Smith, K.C. Jordan, C. Park, J.-W. Kim, P.T. Lillehei, R. Crooks, J.S. Harrison, Nanotechnology 20, 505604 (2009)
M. Zheng, C. Ke, I.-T. Bae, C. Park, M.W. Smith, K. Jordan, Nanotechnology 23, 095703 (2012)
V. Yamakov, C. Park, J.H. Kang, X. Chen, C. Ke, C. Fay, Comput. Mater. Sci. 135, 29 (2017)
C. Yi, X. Chen, F. Gou, C.M. Dmuchowski, A. Sharma, C. Park, C. Ke, Carbon 125, 93 (2017)
C. Yi, S. Bagchi, C.M. Dmuchowski, F. Gou, X. Chen, C. Park, H.B. Chew, C. Ke, Carbon 132, 548 (2018)
C. Yi, S. Bagchi, F. Gou, C.M. Dmuchowski, C. Park, C.C. Fay, H.B. Chew, C. Ke, Nanotechnology 30, 025706 (2019)
W. Qu, F. Gou, C. Ke, Appl. Phys. Lett. 114, 051901 (2019)