Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid

Wiley - Tập 9 Số 4 - Trang 358-363 - 2016
Jong Suk Yoo1,2, Rune Christensen3, Tejs Vegge3, Jens K. Nørskov1,2, Felix Studt1,2
1Department of Chemical Engineering, Stanford University, Stanford, CA 94305 USA
2SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
3Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej Bldg. 309, 2800 Kgs. Lyngby, Denmark

Tóm tắt

AbstractThe electrochemical reduction (electroreduction) of CO2 to formic acid (HCOOH) and its competing reactions, that is, the electroreduction of CO2 to CO and the hydrogen evolution reaction (HER), on twenty‐seven different metal surfaces have been investigated using density functional theory (DFT) calculations. Owing to a strong linear correlation between the free energies of COOH* and H*, it seems highly unlikely that the electroreduction of CO2 to HCOOH via the COOH* intermediate occurs without a large fraction of the current going to HER. On the other hand, the selective electroreduction of CO2 to HCOOH seems plausible if the reaction occurs via the HCOO* intermediate, as there is little correlation between the free energies of HCOO* and H*. Lead and silver surfaces are found to be the most promising monometallic catalysts showing high faradaic efficiencies for the electroreduction of CO2 to HCOOH with small overpotentials. Our methodology is widely applicable, not only to metal surfaces, but also to other classes of materials enabling the computational search for electrocatalysts for CO2 reduction to HCOOH.

Từ khóa


Tài liệu tham khảo

10.1073/pnas.0603395103

10.1002/cssc.200900039

10.1088/2058-7058/22/10/35

10.1002/anie.200806293

10.1002/ange.200806293

10.1016/j.cattod.2006.09.022

10.1039/c2ee21928j

10.1002/anie.201101995

10.1002/ange.201101995

10.1016/j.jcat.2011.01.023

10.1021/ja301696e

10.1021/cs400664z

10.1016/S0378-7753(03)00026-0

10.1016/j.jpowsour.2008.03.075

10.1002/anie.199522071

10.1002/ange.19951072005

10.1002/cssc.200800133

10.1038/nnano.2011.70

10.1038/nchem.1295

Reutemann W., 2012, Ullmann's Encyclopedia of Industrial Chemistry, Vol. 16

10.1021/jp047349j

10.1016/j.chemphys.2005.05.038

10.1039/C1CP22271F

10.1002/cssc.201500322

10.1021/jz201461p

Hori Y., 2008, Electrochemical CO2 Reduction on Metal Electrodes, in Modern Aspects of Electrochemistry, No. 42

10.1021/ja505791r

10.1039/C4CP00692E

10.1039/c2ee21234j

10.1021/ja00250a044

10.1039/c0ee00071j

10.1039/c3cp54822h

10.1016/j.susc.2011.04.028

10.1021/jz3021155

10.1007/s11426-015-5323-z

10.1007/s12678-010-0017-y

Li W., 2010, Electrocatalytic Reduction of CO2 to Small Organic Molecule Fuels on Metal Catalysts, in Advances in CO2 Conversion and Utilization

10.1103/PhysRevLett.99.016105

10.1016/j.ces.2011.02.050

10.1039/c1cp20547a

10.1021/cs5017672

10.1021/ja2108799

10.1016/S0022-0728(97)00447-6

10.1149/1.2096993

10.1039/c3cp50645b

10.1021/ja511890h

10.1016/j.cattod.2014.08.001

10.1021/acscatal.5b00602

10.1021/acs.jpclett.5b01043

10.1103/PhysRevB.85.235149

10.1109/5992.998641

10.1088/0953-8984/21/39/395502

10.1016/j.susc.2015.03.023

10.1007/s10562-012-0947-5

10.1002/cctc.201500123

10.1038/nchem.1873

10.1126/science.1253486

10.1103/PhysRevB.43.6796

10.1103/PhysRevB.13.5188

10.1039/C5CY01332A