Theophylline-Dependent Riboswitch as a Novel Genetic Tool for Strict Regulation of Protein Expression in Cyanobacterium Synechococcus elongatus PCC 7942

Plant and Cell Physiology - Tập 54 Số 10 - Trang 1724-1735 - 2013
Yoichi Nakahira1, Atsushi Ogawa2, Hiroyuki Asano3, Tokitaka Oyama3, Yuzuru Tozawa2,1
1Venture Business Laboratory, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
2Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
3Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abed, 2009, Applications of cyanobacteria in biotechnology, J. Appl. Microbiol., 106, 1, 10.1111/j.1365-2672.2008.03918.x

Amann, 1988, Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli, Gene, 69, 301, 10.1016/0378-1119(88)90440-4

Bustos, 1991, Expression of the psbDII gene in Synechococcus sp. strain PCC 7942 requires sequences downstream of the transcription start site, J. Bacteriol., 173, 7525, 10.1128/jb.173.23.7525-7533.1991

Ducat, 2011, Engineering cyanobacteria to generate high-value products, Trends Biotechnol., 29, 95, 10.1016/j.tibtech.2010.12.003

Elhai, 1993, Strong and regulated promoters in the cyanobacterium Anabaena PCC 7120, FEMS Microbiol. Lett., 114, 179, 10.1111/j.1574-6968.1993.tb06570.x

Geerts, 1995, Inducible expression of heterologous genes targeted to a chromosomal platform in the cyanobacterium Synechococcus sp. PCC 7942, Microbiology, 141, 831, 10.1099/13500872-141-4-831

Huang, 2010, Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology, Nucleic Acids Res., 38, 2577, 10.1093/nar/gkq164

Huang, 2013, Wide-dynamic-range promoters engineered for cyanobacteria, J. Biol. Eng., 7, 10, 10.1186/1754-1611-7-10

Ishiura, 1998, Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria, Science, 281, 1519, 10.1126/science.281.5382.1519

Iwasaki, 2000, A KaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria, Cell, 101, 223, 10.1016/S0092-8674(00)80832-6

Iwasaki, 2002, KaiA-stimulated KaiC phosphorylation in circadian timing loops in cyanobacteria, Proc. Natl Acad. Sci. USA, 99, 15788, 10.1073/pnas.222467299

Johnson, 2011, The cyanobacterial circadian system: from biophysics to bioevolution, Annu. Rev. Biophys., 40, 143, 10.1146/annurev-biophys-042910-155317

Kitayama, 2003, KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system, EMBO J., 22, 2127, 10.1093/emboj/cdg212

Lynch, 2009, A flow cytometry-based screen for synthetic riboswitches, Nucleic Acids Res., 37, 184, 10.1093/nar/gkn924

Muramatsu, 2012, Acclimation to high-light conditions in cyanobacteria: from gene expression to physiological responses, J. Plant Res., 125, 11, 10.1007/s10265-011-0454-6

Murayama, 2008, Regulation of circadian clock gene expression by phosphorylation states of KaiC in cyanobacteria, J. Bacteriol., 190, 1691, 10.1128/JB.01693-07

Mutsuda, 2003, Biochemical properties of CikA, an unusual phytochrome-like histidine protein kinase that resets the circadian clock in Synechococcus elongatus PCC 7942, J. Biol. Chem., 278, 19102, 10.1074/jbc.M213255200

Nakahira, 2004, Global gene repression by KaiC as a master process of prokaryotic circadian system, Proc. Natl Acad. Sci. USA, 101, 881, 10.1073/pnas.0307411100

Nakajima, 2005, Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro, Science, 308, 414, 10.1126/science.1108451

Nelson, 2011, Photosystems and global effects of oxygenic photosynthesis, Biochim. Biophys. Acta, 1807, 856, 10.1016/j.bbabio.2010.10.011

Nishimura, 2002, Mutations in KaiA, a clock protein, extend the period of circadian rhythm in the cyanobacterium Synechococcus elongatus PCC 7942, Microbiology, 148, 2903, 10.1099/00221287-148-9-2903

Ogawa, 2007, Aptazyme-based riboswitches as label-free and detector-free sensors for cofactors, Bioorg. Med. Chem. Lett., 17, 3156, 10.1016/j.bmcl.2007.03.033

Ogawa, 2008, An artificial aptazyme-based riboswitch and its cascading system in E, coli. ChemBioChem, 9, 206, 10.1002/cbic.200700478

Ogawa, 2011, Rational design of artificial riboswitches based on ligand-dependent modulation of internal ribosome entry in wheat germ extract and their applications as label-free biosensors, RNA, 17, 478, 10.1261/rna.2433111

Porter, 1988, DNA transformation, Methods Enzymol., 167, 703, 10.1016/0076-6879(88)67081-9

Price, 2008, Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants, J. Exp. Bot., 59, 1441, 10.1093/jxb/erm112

Roth, 2009, The structural and functional diversity of metabolite-binding riboswitches, Annu. Rev. Biochem., 78, 305, 10.1146/annurev.biochem.78.070507.135656

Ruffing, 2011, Engineered cyanobacteria: teaching an old bug new tricks, Bioeng. Bugs, 2, 136, 10.4161/bbug.2.3.15285

Rust, 2011, Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator, Science, 331, 220, 10.1126/science.1197243

Seeliger, 2012, A riboswitch-based inducible gene expression system for mycobacteria, PLoS One, 7, e29266, 10.1371/journal.pone.0029266

Topp, 2010, Synthetic riboswitches that induce gene expression in diverse bacterial species, Appl. Environ. Microbiol., 76, 7881, 10.1128/AEM.01537-10

Verhounig, 2010, Inducible gene expression from the plastid genome by a synthetic riboswitch, Proc. Natl Acad. Sci. USA, 107, 6204, 10.1073/pnas.0914423107

Xu, 2003, Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC, EMBO J., 22, 2117, 10.1093/emboj/cdg168