Theophylline-Dependent Riboswitch as a Novel Genetic Tool for Strict Regulation of Protein Expression in Cyanobacterium Synechococcus elongatus PCC 7942
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abed, 2009, Applications of cyanobacteria in biotechnology, J. Appl. Microbiol., 106, 1, 10.1111/j.1365-2672.2008.03918.x
Amann, 1988, Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli, Gene, 69, 301, 10.1016/0378-1119(88)90440-4
Bustos, 1991, Expression of the psbDII gene in Synechococcus sp. strain PCC 7942 requires sequences downstream of the transcription start site, J. Bacteriol., 173, 7525, 10.1128/jb.173.23.7525-7533.1991
Ducat, 2011, Engineering cyanobacteria to generate high-value products, Trends Biotechnol., 29, 95, 10.1016/j.tibtech.2010.12.003
Elhai, 1993, Strong and regulated promoters in the cyanobacterium Anabaena PCC 7120, FEMS Microbiol. Lett., 114, 179, 10.1111/j.1574-6968.1993.tb06570.x
Geerts, 1995, Inducible expression of heterologous genes targeted to a chromosomal platform in the cyanobacterium Synechococcus sp. PCC 7942, Microbiology, 141, 831, 10.1099/13500872-141-4-831
Huang, 2010, Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology, Nucleic Acids Res., 38, 2577, 10.1093/nar/gkq164
Huang, 2013, Wide-dynamic-range promoters engineered for cyanobacteria, J. Biol. Eng., 7, 10, 10.1186/1754-1611-7-10
Ishiura, 1998, Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria, Science, 281, 1519, 10.1126/science.281.5382.1519
Iwasaki, 2000, A KaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria, Cell, 101, 223, 10.1016/S0092-8674(00)80832-6
Iwasaki, 2002, KaiA-stimulated KaiC phosphorylation in circadian timing loops in cyanobacteria, Proc. Natl Acad. Sci. USA, 99, 15788, 10.1073/pnas.222467299
Johnson, 2011, The cyanobacterial circadian system: from biophysics to bioevolution, Annu. Rev. Biophys., 40, 143, 10.1146/annurev-biophys-042910-155317
Kitayama, 2003, KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system, EMBO J., 22, 2127, 10.1093/emboj/cdg212
Lynch, 2009, A flow cytometry-based screen for synthetic riboswitches, Nucleic Acids Res., 37, 184, 10.1093/nar/gkn924
Muramatsu, 2012, Acclimation to high-light conditions in cyanobacteria: from gene expression to physiological responses, J. Plant Res., 125, 11, 10.1007/s10265-011-0454-6
Murayama, 2008, Regulation of circadian clock gene expression by phosphorylation states of KaiC in cyanobacteria, J. Bacteriol., 190, 1691, 10.1128/JB.01693-07
Mutsuda, 2003, Biochemical properties of CikA, an unusual phytochrome-like histidine protein kinase that resets the circadian clock in Synechococcus elongatus PCC 7942, J. Biol. Chem., 278, 19102, 10.1074/jbc.M213255200
Nakahira, 2004, Global gene repression by KaiC as a master process of prokaryotic circadian system, Proc. Natl Acad. Sci. USA, 101, 881, 10.1073/pnas.0307411100
Nakajima, 2005, Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro, Science, 308, 414, 10.1126/science.1108451
Nelson, 2011, Photosystems and global effects of oxygenic photosynthesis, Biochim. Biophys. Acta, 1807, 856, 10.1016/j.bbabio.2010.10.011
Nishimura, 2002, Mutations in KaiA, a clock protein, extend the period of circadian rhythm in the cyanobacterium Synechococcus elongatus PCC 7942, Microbiology, 148, 2903, 10.1099/00221287-148-9-2903
Ogawa, 2007, Aptazyme-based riboswitches as label-free and detector-free sensors for cofactors, Bioorg. Med. Chem. Lett., 17, 3156, 10.1016/j.bmcl.2007.03.033
Ogawa, 2008, An artificial aptazyme-based riboswitch and its cascading system in E, coli. ChemBioChem, 9, 206, 10.1002/cbic.200700478
Ogawa, 2011, Rational design of artificial riboswitches based on ligand-dependent modulation of internal ribosome entry in wheat germ extract and their applications as label-free biosensors, RNA, 17, 478, 10.1261/rna.2433111
Price, 2008, Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants, J. Exp. Bot., 59, 1441, 10.1093/jxb/erm112
Roth, 2009, The structural and functional diversity of metabolite-binding riboswitches, Annu. Rev. Biochem., 78, 305, 10.1146/annurev.biochem.78.070507.135656
Ruffing, 2011, Engineered cyanobacteria: teaching an old bug new tricks, Bioeng. Bugs, 2, 136, 10.4161/bbug.2.3.15285
Rust, 2011, Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator, Science, 331, 220, 10.1126/science.1197243
Seeliger, 2012, A riboswitch-based inducible gene expression system for mycobacteria, PLoS One, 7, e29266, 10.1371/journal.pone.0029266
Topp, 2010, Synthetic riboswitches that induce gene expression in diverse bacterial species, Appl. Environ. Microbiol., 76, 7881, 10.1128/AEM.01537-10
Verhounig, 2010, Inducible gene expression from the plastid genome by a synthetic riboswitch, Proc. Natl Acad. Sci. USA, 107, 6204, 10.1073/pnas.0914423107
