The world‐wide ‘fast–slow’ plant economics spectrum: a traits manifesto

Journal of Ecology - Tập 102 Số 2 - Trang 275-301 - 2014
Peter B. Reich1,2
1Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA
2Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2751, Australia

Tóm tắt

Summary

The leaf economics spectrum (LES) provides a useful framework for examining species strategies as shaped by their evolutionary history. However, that spectrum, as originally described, involved only two key resources (carbon and nutrients) and one of three economically important plant organs. Herein, I evaluate whether the economics spectrum idea can be broadly extended to water – the third key resource –stems, roots and entire plants and to individual, community and ecosystem scales. My overarching hypothesis is that strong selection along trait trade‐off axes, in tandem with biophysical constraints, results in convergence for any taxon on a uniformly fast, medium or slow strategy (i.e. rates of resource acquisition and processing) for all organs and all resources.

Evidence for economic trait spectra exists for stems and roots as well as leaves, and for traits related to water as well as carbon and nutrients. These apply generally within and across scales (within and across communities, climate zones, biomes and lineages).

There are linkages across organs and coupling among resources, resulting in an integrated whole‐plant economics spectrum. Species capable of moving water rapidly have low tissue density, short tissue life span and high rates of resource acquisition and flux at organ and individual scales. The reverse is true for species with the slow strategy. Different traits may be important in different conditions, but as being fast in one respect generally requires being fast in others, being fast or slow is a general feature of species.

Economic traits influence performance and fitness consistent with trait‐based theory about underlying adaptive mechanisms. Traits help explain differences in growth and survival across resource gradients and thus help explain the distribution of species and the assembly of communities across light, water and nutrient gradients. Traits scale up – fast traits are associated with faster rates of ecosystem processes such as decomposition or primary productivity, and slow traits with slow process rates.

Synthesis. Traits matter. A single ‘fast–slow’ plant economics spectrum that integrates across leaves, stems and roots is a key feature of the plant universe and helps to explain individual ecological strategies, community assembly processes and the functioning of ecosystems.

Từ khóa


Tài liệu tham khảo

10.1890/03-4022

10.1111/j.1461-0248.2006.01006.x

10.2307/2656775

10.1111/j.1469-8137.2006.01741.x

10.1073/pnas.1315179111

10.1016/S0065-2504(08)60016-1

10.1111/j.1365-2745.2005.01033.x

10.1111/j.1365-2745.2007.01286.x

10.1007/s00442-007-0722-2

10.1111/j.1461-0248.2010.01517.x

10.1111/j.1461-0248.2012.01751.x

10.2307/2261398

10.1111/j.1469-8137.2010.03439.x

10.1007/s00442-011-2064-3

10.1146/annurev.es.16.110185.002051

10.1111/j.1466-8238.2011.00717.x

10.1029/2011JG001913

10.1111/j.1095-8312.1989.tb00492.x

10.1098/rspb.2008.1919

10.3417/2009143

10.1046/j.1365-3040.2000.00647.x

10.1111/j.1461-0248.2009.01410.x

10.1104/pp.107.101352

10.1111/j.1469-8137.2004.01259.x

10.1111/j.1365-2745.2007.01295.x

10.5194/bg-9-565-2012

10.1046/j.1469-8137.2002.00397.x

10.1093/treephys/tps054

10.1890/0012-9658(1997)078[1958:CAFASA]2.0.CO;2

10.1093/treephys/28.1.85

10.1890/12-0092.1

10.1890/03-4007

10.1890/11-0502.1

10.1111/j.1469-8137.2005.01555.x

10.1111/j.1461-0248.2009.01314.x

10.1111/j.1365-2745.2005.01043.x

10.1111/j.1461-0248.2009.01285.x

10.1007/s11284-010-0722-2

10.1111/j.1469-8137.2007.02137.x

10.1111/j.1469-8137.2011.03772.x

10.1038/nature11688

10.1038/nature06503

10.1111/j.0269-8463.2004.00835.x

10.1111/j.1469-8137.2009.02799.x

10.2307/2261479

10.1046/j.1469-8137.1997.00628.x

10.1007/s004420100752

10.1111/1365-2745.12208

10.1890/07-1134.1

10.1111/j.1365-2745.2010.01662.x

10.1111/j.1461-0248.2008.01219.x

10.1515/9781400830640

10.1007/s00442-002-1155-6

10.1046/j.1365-2435.2002.00660.x

10.1890/04-1075

10.1007/s10533-007-9153-8

10.2307/3237229

10.1111/j.1654-1103.2004.tb02266.x

10.1111/j.1365-3040.2010.02119.x

10.1111/1365-2745.12193

10.1016/j.tree.2010.11.011

10.1086/519857

10.1086/657992

10.1111/nph.12353

10.1016/S0065-2504(08)60005-7

10.1038/nature05747

10.1038/nature06061

10.1111/j.1365-2745.2010.01735.x

10.1111/j.1469-8137.2011.03940.x

10.1890/12-1548.1

10.1073/pnas.1014456108

10.1890/08-0418.1

10.1111/j.1365-2435.2011.01913.x

10.1111/j.1365-2745.2009.01615.x

10.1111/1365-2745.12092

10.1890/03-0799

Givnish T.J., 1986, On the Economy of Plant Form and Function

10.3732/ajb.91.2.228

10.1111/1365-2745.12014

10.1038/208161a0

10.1086/283244

Grime J.P., 1979, Plant Strategies and Vegetation Processes

10.1046/j.1365-2745.1998.00306.x

Grime J.P., 2001, Plant strategies, Vegetation Processes, and Ecosystem Properties

10.2307/3546011

10.1111/j.1469-8137.2008.02573.x

10.1890/07-1119.1

10.1890/0012-9658(2006)87[2288:TSEODA]2.0.CO;2

10.1007/s10021-007-9073-4

10.1007/s00442-009-1479-6

10.1073/pnas.1005874107

10.1093/aob/mcr225

10.1111/j.1365-2745.2011.01821.x

10.1890/10-1697.1

10.1073/pnas.1310880110

10.1111/j.1365-2486.2008.01744.x

10.1111/j.1365-2486.2011.02451.x

10.1046/j.1365-3040.2003.00965.x

10.1111/j.1466-822X.2005.00187.x

10.1086/507879

10.1111/geb.12042

10.1007/BF00324232

10.1111/j.1469-8137.2010.03212.x

10.1890/0012-9658(1999)080[0187:LGPATT]2.0.CO;2

10.2307/1942040

10.1111/j.1469-8137.2012.04297.x

Körner C., 2003, Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems, 359, 10.1007/978-3-642-18970-8

10.1007/978-3-642-15518-5_12

10.1890/09-1672.1

10.1126/science.1160662

10.1111/j.1365-2435.2008.01483.x

10.1111/j.1365-2745.2012.01962.x

10.1016/S0065-2504(08)60148-8

10.1016/j.tree.2007.10.008

10.1007/s11104-010-0444-9

10.1093/conphys/cot010

10.1111/j.1365-2745.2011.01856.x

10.1111/j.1365-2745.2011.01885.x

10.1111/j.1461-0248.2012.01852.x

10.1046/j.1365-2435.2002.00664.x

10.1111/j.1365-2745.2011.01914.x

10.1111/j.1469-8137.2010.03388.x

10.1111/j.1469-8137.1967.tb05432.x

10.1111/1365-2435.12129

10.1007/s004420051018

10.1093/aob/mcr166

10.1890/02-0538

10.1093/treephys/tps008

10.1126/science.1159792

10.1111/j.1365-3040.2010.02231.x

10.1111/j.1365-2745.2012.01965.x

10.1111/j.1365-2745.2009.01619.x

10.1111/j.1365-2745.2009.01620.x

10.1111/j.1469-8137.2012.04198.x

10.1111/j.1469-8137.2010.03181.x

10.1890/03-0351

10.1111/j.1365-2486.2010.02375.x

10.1093/treephys/28.11.1609

10.1007/s00442-008-0974-5

10.1111/j.1365-2435.2009.01577.x

10.1007/s00442-010-1734-x

10.1111/j.1469-8137.2012.04247.x

10.1890/09-1663.1

10.1071/FP11057

10.1007/BF00121013

10.1046/j.1365-2435.1998.00236.x

10.1073/pnas.0810021105

10.1111/j.1466-8238.2011.00667.x

10.1111/j.1461-0248.2010.01582.x

10.1111/j.1466-8238.2008.00441.x

10.1111/j.1365-2745.2010.01679.x

10.1111/j.1461-0248.2011.01611.x

10.1126/science.1231574

10.2307/2963479

10.1111/j.1469-8137.2010.03615.x

10.1111/nph.12221

10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2

10.1890/07-0207.1

10.1111/j.1469-8137.2009.03092.x

10.1093/treephys/18.10.665

10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2

10.1111/j.1469-8137.2010.03579.x

10.1111/ele.12211

Raunkiaer C., 1934, The Life Forms of Plants and Statistical Plant Geography

10.1007/BF01972080

10.1139/b04-123

10.1046/j.1469-8137.2003.00704.x

10.1098/rspb.2011.2270

10.2307/2390092

10.1046/j.1365-2435.1998.00274.x

10.1073/pnas.0403588101

10.1007/s00442-009-1291-3

10.2307/2937116

10.1007/BF00317909

10.1073/pnas.94.25.13730

10.1890/06-1803.1

10.1046/j.1365-2435.1998.00208.x

10.1046/j.1365-2435.1998.00209.x

10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2

10.1890/0012-9658(2001)082[1703:FAVEOP]2.0.CO;2

10.1086/374368

10.1111/j.1461-0248.2005.00779.x

10.1111/j.1461-0248.2008.01185.x

10.1126/science.1217909

10.1073/pnas.1216054110

10.1007/s00442-004-1501-y

10.3732/ajb.1100428

10.1111/j.1365-2745.2005.01030.x

10.1111/j.1365-2435.2009.01670.x

10.1111/nph.12253

10.1093/jxb/ert316

10.1890/06-1841

10.1007/s00442-004-1624-1

10.1890/11-0406.1

10.1890/12-1779.1

10.1073/pnas.1012194108

10.1111/j.1469-8137.2012.04306.x

10.1126/science.1131344

10.1007/BF01036748

10.1111/j.1365-3040.2007.01765.x

10.1111/j.1365-2435.2012.02022.x

10.1111/j.1461-0248.2012.01864.x

10.1038/nature05134

10.1086/503056

10.1111/j.1469-8137.2008.02650.x

10.1111/j.1365-2486.2008.01557.x

10.1890/08-1025.1

10.1890/09-1743.1

10.1111/j.1466-8238.2011.00727.x

10.1890/11-0402.1

Tilman D., 1982, Resource Competition and Community Structure

10.2307/2937080

10.2307/2937208

10.1111/j.1469-8137.2005.01428.x

10.1007/s00442-004-1803-0

10.1007/s11104-013-1750-9

10.1093/aob/mcn182

10.1111/j.0030-1299.2007.15559.x

10.2307/1939338

10.1890/08-0127.1

10.1111/j.1461-0248.2012.01844.x

10.2307/2265505

10.1046/j.1469-8137.1999.00425.x

10.1029/2012GL053461

10.1023/A:1004327224729

10.1016/j.tree.2006.02.004

10.1111/nph.12345

10.1007/s00442-005-0068-6

10.1016/j.soilbio.2012.06.001

10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2

10.1086/344920

10.1111/j.1469-8137.2005.01349.x

10.1111/j.1466-822x.2005.00172.x

10.1890/09-2335.1

10.1111/j.1365-2745.2009.01487.x

10.1038/ncomms1346

10.3732/ajb.0900178