The well-posedness of local solutions for a generalized Novikov equation

Collectanea Mathematica - Tập 65 - Trang 257-271 - 2013
Shaoyong Lai1, Feng Zhang1,2, Hanlei Hu1
1Department of Mathematics, Southwestern University of Finance and Economics, Chengdu, China
2Department of Mathematics, Southwest Jiaotong University, Chengdu, China

Tóm tắt

The pseudo-parabolic regularization technique is applied to establish the well-posedness of local solutions for a generalized Novikov equation in the Sobolev space $$H^s(R)$$ with $$s>\frac{3}{2}$$ . The existence of local weak solutions for the equation in the lower order Sobolev space $$H^s$$ with $$1\le s\le \frac{3}{2}$$ is also investigated.

Tài liệu tham khảo

Bona, J.L., Smith, R.: The initial value problem for the Korteweg-De Vries equation. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 278(1287), 555–601 (1975) Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993) Constantin, A., Lannes, D.: The hydro-dynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 193, 165–186 (2009) Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998) Hone, A.N.W., Wang, J.P.: Integrable peakon equations with cubic nonlinearity. J. Phys. A Math. Theor. 41, 372002–10 (2008) Himonas, A., Holliman, C.: The Cauchy problem for the Novikov equation. Nonlinearity 25, 449–479 (2012) Himonas, A.A., Holmes, J.: Hölder continuity of the solution map for the Novikov equation. J. Math. Phys. 54(6), 061501–061511 (2013) Hone, A.N., Lundmark, H., Szmigielski, J.: Explicit multipeakon solutions of Novikov’s cubically nonlinear integrable Camassa–Holm type equation. Dyn. Partial Differ. Equ. 6, 253–289 (2009) Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988) Lai, S.Y., Wu, Y.H.: The local well-posedness and existence of weak solutions for a generalized Camassa–Holm equation. J. Differ. Equ. 248, 2038–2063 (2010) Li, Y., Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162, 27–63 (2000) Novikov, V.: Generalizations of the Camassa–Holm equation. J. Phys. A Math. Theor. 42, 342002–342014 (2009) Ni, L., Zhou, Y.: Well-posedness and persistence properties for the Novikov equation. J. Differ. Equ. 250, 3002–3021 (2011) Rodriguze-Blanco, G.: On the Cauchy problem for the Camassa–Holm equation. Nonlinear Anal. TMA 46, 309–327 (2001) Tiglay, F.: The periodic Cauchy problem for Novikov’s equation. Math. AP arXiv:1009.1820v1 (2010) Yin, Z.Y.: On the blow-up scenario for the generalized Camassa–Holm equation. Commun. Partial Differ. Equ. 29, 867–877 (2004) Zhou, Y.: Wave breaking for a periodic shallow water equation. J. Math. Anal. Appl. 290, 591–604 (2004)